Electronic Supplementary Information

Selective hydrogenation of succinic acid to gamma-butyrolactone with PVP-capped CuPd catalysts

Son Dinh Le, Shun Nishimura*

Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan *Corresponding author. Email: s_nishim@jaist.ac.jp

Number of Page: 8 Number of Figures: 9 Number of Tables: 3

Chemical name	Formula	$Mw/g mol^{-1}$	Supplier
Butyric acid	$C_4H_8O_2$	88.11	Aldrich
Copper (II) acetate monohydrate	$Cu(CO_2CH_3)_2\cdot H_2O$	199.65	Wako
γ -Butyrolactone	$C_4H_6O_2$	86.09	Aldrich
Hydroxyapatite (HAP)	$Ca_{10}(PO_4)_6(OH)_2$	502.31	Kanto
Palladium acetate	$Pd(CH_3COO)_2$	224.51	Wako
Polyvinyl alcohol (PVA)	$(C_2H_4O)_n$	3500	Wako
Polyvinylpyrrolidone (PVP, K12)	$(C_6H_9NO)_n$	3500	Acros Org.
PVP (K16–18)	$(C_6H_9NO)_n$	8000	Acros Org.
PVP (K30)	$(C_6H_9NO)_n$	40000	Kanto
PVP (K29–32)	$(C_6H_9NO)_n$	58000	Acros Org.
PVP (K90)	$(C_6H_9NO)_n$	360000	Acros Org.
Starch, soluble	$(C_6H_{10}O_5)_n$	-	Kanto
Succinic acid	$C_4H_6O_4$	118.09	Kanto
1,4-Butanediol	$C_4H_{10}O_2$	90.12	Wako
1,4-Dioxane	$C_4H_8O_2$	88.11	Wako
1-Ethyl-2-pyrrolidone	C ₆ H ₁₁ NO	113.16	Acros Org.
1-Vinyl-2-pyrrolidone	C ₆ H ₉ NO	111.14	Aldrich
2-Ethoxyethanol	$C_4H_{10}O_2$	90.12	Wako

 Table S1: List of chemicals

Fig. S1: Influence of difference capping agent on the catalytic performance of HAP supported $Cu_{40}Pd_{60}$ catalyst. Reaction conditions: SA (0.1 g), $Cu_{40}Pd_{60}$ –Polymer/HAP (0.1 g), 1,4-dioxane (10 mL), temperature (200 °C), H₂ pressure (8 MPa), reaction time (48 h).

Fig. S2: Influence of metal loading on the activity of the $Cu_{40}Pd_{60}$ –PVP/HAP catalyst. Reaction conditions: SA (0.1 g), catalyst (0.1 g), 1,4-dioxane (10 mL), temperature (200 °C), H₂ pressure (8 MPa), reaction time (48 h), *catalyst (0.2 g).

Fig. S3: TEM image of the Cu₄₀Pd₆₀/HAP catalyst (no capping agent)

Fig. S4: XRD patterns of the Cu_xPd_y – PVP/HAP catalysts

Fig. S5: XRD patterns of the unsupported PVP-capped $Cu_{40}Pd_{60}$ sample. The lattice parameter (a) was determined by using the Bragg's law.

Fig. S6: N_2 adsorption/desorption isotherms of (A) the HAP support and (B) $Cu_{40}Pd_{60}-PVP/HAP$ catalyst.

Catalyst	Cu 2p _{3/2}		$\operatorname{Cu} 2p_{1/2}$		Pd $3d_{5/2}$		Pd $3d_{3/2}$	
	Cu^0	Cu ²⁺	Cu^0	Cu ²⁺	Pd^0	Pd ²⁺	Pd^0	Pd ²⁺
Cu ₁₀₀	933.2	935.1	952.9	955.3	-	-	-	-
$Cu_{80}Pd_{20} \\$	933.1	935.5	952.8	955.0	335.1	336.9	340.2	341.4
$Cu_{60}Pd_{40}$	933.0	935.8	952.8	955.6	334.9	336.2	340.1	341.2
$Cu_{40}Pd_{60}$	932.8	-	952.6	-	334.9	-	340.2	-
$Cu_{20}Pd_{80}$	933.2	-	953.5	-	335.0	336.6	340.3	341.5
Pd ₁₀₀	-	-	-	-	334.6	335.7	339.9	340.9

Table S2: Binding energy of the Cu_xPd_y – PVP/HAP catalysts at Cu $2p_{3/2}$ and Pd $3d_{5/2}$ regions

Fig. S7: k^3 -weighted EXAFS spectra of the Cu_xPd_y-PVP/HAP catalysts and references at Pd K-edge

Table S3: EXAFS fitting results at Pd K-edge for the fresh and used $Cu_{40}Pd_{60}$ -PVP/HAP catalysts

Sample	CN _{Pd-Pd}	CN_{Pd-Cu}	R _{Pd-Pd} (Å)	$R_{Pd-Cu} (\text{\AA})$
Fresh	4.7 ± 0.6	1.4 ± 0.5	2.7051 ± 0.0098	2.6612 ± 0.0295
Used	2.7 ± 0.6	2.2 ± 0.5	2.6844 ± 0.0111	2.6069 ± 0.0111

Fig. S8: (A) XANES features and (B) k^3 -weighted EXAFS spectra at Pd K-edge of the fresh and used Cu₄₀Pd₆₀-PVP/HAP catalysts

Fig. S9: Flow reactor system used in this study

Note: Continuous reactions were carried out in a down-flow fixed-bed reactor system (MCR-1000, EYELA, Tokyo, Japan). The catalyst (0.5 g) was loaded into a stainless steel tube ($\phi = 5 \text{ mm}$) and secured in place by bed filters at both ends. The liquid and hydrogen flow rates were set at 0.3 and 10 mL min⁻¹, respectively. The reactor was pressurized with pure H₂ (99.999%) to 0.5 MPa and then the temperature of the furnace was increased to 200 °C. The reaction mixture was collected at hourly intervals and analyzed by GC.