Multistep protection strategy for preparation of atomically dispersed Fe-N catalyst for selective oxidation of ethylbenzene to acetophenone

Hong Zhao,[#] Jian Fang,[#] Dan Xu, Jianfeng Li, Boyang Li, Huacheng Zhao and Zhengping Dong*

State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.

[#] These authors contributed the same to this work.

* Corresponding author. <u>dongzhp@lzu.edu.cn</u> (Zhengping Dong).

Detailed procedure for the O₂-TPD measurement.

Typically, 50 mg of Fe-N@HCS-900 catalyst was treated under 25 mL min⁻¹ Ar flow at 120 °C for 30 min. After the catalyst sample was cooled to room temperature, the Ar flow switched to a 5% O_2 /He flow with 25ml/min. Then, the sample was heated to 800 °C with the heating rate of 10 °C min⁻¹. The signal was recorded on a Micromeritics ChemiSorb 2720 instrument.

Figure S1. SEM image of SiO₂.

Figure S2. TEM image of SiO₂.

Figure S3. SEM image of Fe-N@SiO₂-900.

Figure S4. SEM image of Fe-N@HCS-900.

Figure S5. TEM image of Fe-N@HCS-700.

Figure S6. TEM image of Fe-N@HCS-800.

Figure S7. The EDX spectrum of Fe-N@HCS-900 catalysts.

Figure S8. The corresponding TEM images of (a) Fe NPs@AC, (b) Fe NPs@HCS (without addition of Zn^{2+}), (c) Fe NPs@HCS (without addition of 1,10-phenanthroline).

Figure S9. XPS Fe 2p spectra of Fe–N@HCS-T samples.

Figure S10. O₂-TPD results of Fe-N@HCS-900.

Figure S11. The optimized DFT model for the O-O bond length change in TBHP activated by Fe-N $_5$ sites.

Figure S12. The DFT calculation model for polarized α -H in ethylbenzene.

Figure S13. The reaction pathway and corresponding activation energy for ethylbenzene oxidation.

Figure S14. XRD pattern of Fe-N@HCS-900 after six cycles of reaction.

Figure S15. TEM image of the Fe–N@HCS-900 catalyst after six cycles of reaction.

Table S1. EXAFS fitting parameters at the Fe K-edge for Fe-N@HCS-900.

Sample	Shell	CN ^a	R (Å) ^b	$\sigma^2(Å^2 \cdot 10^{-3})$ °	$\Delta E0 (eV)^{d}$	R factor
Fe-N@HCS-900	Fe-N	5.2	1.97±0.03	10.5	-4.6	0.007

^{*a*} CN: coordination number; ^{*b*} R: bond distance; ^{*c*} σ^2 : Debye-Waller factors; ^{*d*} ΔE_0 : the inner potential correction. *R* factor: goodness of fit. S_0^2 was set as 0.89 for Fe-N, which was obtained from the experimental EXAFS fit of reference FePc by fixing CN as the known crystallographic value and was fixed to all the samples. Fitting parameters: k-range: [2.423:9.977], dk=1.00; R-range: [1.000 :1.994], dR=0.00; kweight=2,3; k-window=hanning, R-window=hanning, fit space=R, fit background: no.

Surface Pore volume Fe Zn C (%) N (%) H (%) Catalyst Area (m^2/g) (cm^3/g) (wt%) (wt%) Fe-N@HCS-700 81.2 0.15 0.69 3.02 60.43 6.64 1.71 Fe-N@HCS -800 75.0 0.16 0.61 2.67 67.78 6.22 1.40 Fe-N@HCS -900 460.8 0.39 0.66 0.08 75.15 4.89 1.58

Table S2. Structure parameters and the element content of the prepared catalysts.

Entry	Catalyst	Reaction conditions	Conv. (%)	Sel. (%)	Ref.
1	Fe-N-C	10.0 mg of catalyst, 0.5 mmol of ethylbenzene, 500 μ L TBHP, 6.5 mL H ₂ O, 25 °C, 7 h.	99	99	[1]
2	Co/AC-salen-400	25.0 mg of catalyst, 1.0 mmol of ethylbenzene, 0.45mmol TBHP, 5.0 mL CH ₃ CN, 80 °C, 4 h.	47.9	83.5	[2]
3	Co-N-C- 900/PCMK	15.0 mg of catalyst, 1.0 mmol of ethylbenzene, 490 μL TBHP, 3.0 mL H ₂ O, 80 °C, 12 h.	96	99	[3]
4	CoZnAl- MMO/Al ₂ O ₃	100.0 mg of catalyst, 10 mmol of ethylbenzene, 30 mmol TBHP, 120 °C, 12 h.	69.5	80.4	[4]
5	$Co_2Ni_1Al_1O_x$	200.0 mg of catalyst, 5.0 mLof ethylbenzene, 15.0 mL TBHP, 10.0 mL CH ₃ COOH, 120 °C, 8 h	80.0	88.9	[5]
6	Co-N-C-20	15.0 mg of catalyst, 1.0 mmol of ethylbenzene, 3.5 mmol TBHP, 3 mL H ₂ O, 80 °C, 12 h.	90.9	99.3	[6]
7	Fe-N@HCS-900	20.0 mg of catalyst, 0.25 mmol of ethylbenzene, 0.35mL TBHP, 3 mL H ₂ O, room temperature, 6 h.	66.5	94.2	This work
8	Fe-N@HCS-900	20.0 mg of catalyst, 0.25 mmol of ethylbenzene, 0.35mL TBHP, 3 mL H ₂ O, room temperature, 18 h.	99	99.5	This work

Table S3. The comparison of the catalytic activity of Fe-N@HCS-900 with other reported catalysts.

References

[1] W. Liu, L. Zhang, X. Liu, X. Liu, X. Yang, S. Miao, W. Wang, A. Wang, T. Zhang, Discriminating Catalytically Active FeNx Species of Atomically Dispersed Fe–N–C Catalyst for Selective Oxidation of the C–H Bond, J. Am. Chem. Soc., 139 (2017) 10790-10798.

[2] K. Nakatsuka, T. Yoshii, Y. Kuwahara, K. Mori, H. Yamashita, Controlled synthesis of carbon-supported Co catalysts from single-sites to nanoparticles: characterization of the structural transformation and investigation of their oxidation catalysis, Phys. Chem. Chem. Phys., 19 (2017) 4967-4974.

[3] L. Zhang, S. Jie, N. Cheng, Z. Liu, Solvent-Free Melting-Assisted Pyrolysis Strategy Applied on the Co/N Codoped Porous Carbon Catalyst, ACS Sustain. Chem. Eng., 7 (2019) 19474-19482.

[4] R. Xie, G. Fan, L. Yang, F. Li, Solvent-free oxidation of ethylbenzene over hierarchical flower-like core-shell structured Co-based mixed metal oxides with significantly enhanced catalytic performance, Catal. Sci. Technol., 5 (2015) 540-548.

[5] D. Ji, N. Xi, G. Li, P. Dong, H. Li, H. Li, C. Li, P. Wang, Y. Zhao, Hydrotalcitebased CoxNiyAl1Ox mixed oxide as a highly efficient catalyst for selective ethylbenzene oxidation, Mol. Catal., 508 (2021) 111579.

[6] S. Li, L. Zhang, S. Jie, Z. Liu, In situ synthesis of highly dispersed Co–N–C catalysts with carbon-coated sandwich structures based on defect anchoring, New J. Chem., 44 (2020) 5404-5409.