Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Electronically Tuneable Orthometalated Ru^{II}-NHC Complexes as Efficient Catalysts for the C-C and C-N Bond Formations *via* Borrowing Hydrogen Strategy

Praseetha Mathoor Illam, and Arnab Rit*

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India

Table of contents:

General experimental procedures	. S2
General procedure for the β-alkylation reaction	. S2
General procedure for the dialkylation of secondary alcohols	. S2
General procedure for the N-methylation of amines	. S3
Procedure for the calculation of TON for the β -alkylation reaction	. S3
Optimization studies	. S3
Characterization data of the isolated compounds	. S4
¹ H and ¹³ C{ ¹ H} NMR spectra of the isolated compounds from catalytic reactions	S15
Mechanistic studies	S57

General experimental procedures

All manipulations were performed under an argon/dinitrogen atmosphere using either standard Schlenk line or glovebox techniques. All glassware was oven-dried at 130 °C overnight prior to use. The solvents used were dried, distilled, and degassed by standard methods and stored over 4 Å molecular sieves. NMR measurements were carried out on Bruker 400 and 500 MHz FT-NMR spectrometers. ESI-MS was recorded using an Agilent 6545A Q-TOF Mass spectrometer. The chemical shifts in the ¹H NMR spectra were referenced to the residual proton signals of the deuterated solvents (CDCl₃, ¹H 7.26 ppm and ¹³C{¹H} 77.16 ppm; CD₃CN, ¹H 1.96 ppm and ¹³C{¹H} 1.79 and 118.26 ppm) and reported relative to tetramethylsilane. The coupling constants are expressed in hertz. [Ru(η^6 -*p*-cymene)Cl₂]₂, the ligands (**1a-c**) and their ruthenium complexes (**2a-c**) were synthesized using reported procedures.¹ Primary and secondary alcohols were synthesized according to the literature procedures.^{2,3} All the other chemicals were purchased from commercial sources and used as received without further purification.

General procedure for the β -alkylation reaction: The required amount of catalyst stock solution, synthesized in CH₃CN (0.01 mol%), was added to an oven dried Schlenk tube and the volatiles were removed in high vacuum. To this, secondary alcohol (1 mmol), primary alcohol (1.1 mmol), and KOH (0.2 mmol, 20 mol%) followed by toluene (1 mL) were added. The reaction tube was then kept in an oil bath (bath temperature 120 °C) and heated for the specified time. After the completion of reaction, the reaction mixture was cooled to room temperature and the pure products were isolated *via* column chromatography using hexane/ethyl acetate as eluent.

General procedure for one-pot sequential synthesis of a,a-disubstituted ketones: The required amount of catalyst stock solution, synthesized in CH₃CN (0.01 mol%), was added to an oven dried Schlenk tube and the volatiles were removed in high vacuum. To this, secondary alcohol (1 mmol), primary alcohol (1.1 mmol), and KOH (0.2 mmol, 20 mol%) followed by toluene (1 mL) were added. The reaction tube was then kept in an oil bath (bath temperature 120 °C) and heated for the specified time. Then 1 mol% catalyst, 1 equiv. of KO'Bu and 1 equiv. of second primary alcohol were added to the reaction mixture and further heated at 150 °C for 24 h. After that, the reaction mixture was cooled to room temperature and the pure products were isolated *via* column chromatography using hexane/ethyl acetate as eluent.

General Procedure for the N-methylation of amines: An oven dried pressure tube, equipped with a magnetic stirring bar, was charged with KOH (0.5 mmol), catalyst (1 mol%), amine (0.5 mmol), and methanol (1 mL). The reaction mixture was then kept in a pre-heated oil bath (bath temperature 150 °C). After the specific reaction time, the pressure tube was cooled to room temperature. The residue obtained after removal of all the volatiles was purified *via* column chromatography using ethyl acetate and hexane as eluents to get the desired N-methylated products.

Procedure for the calculation of TON for β-alkylation reaction: The catalyst stock solution was synthesized by dissolving **2d** in CH₃CN. An oven dried Schlenk tube was charged with a required amount of **2d** (0.001 mol%) stock solution and all the volatiles were removed in vacuum. To this, secondary alcohol (10 mmol), primary alcohol (11 mmol), and KOH (2 mmol) followed by toluene (10 mL) were added. The reaction tube was then kept in an oil bath (bath temperature 120 °C) and heated for 36 h. After that the reaction mixture was cooled to room temperature and subjected to GC-MS analysis. The average data based on the GC-MS analysis shows the 68% formation of **4a** which provides TON of 68000.

Optimization studies

Table S1. Base screening^a

^aReaction conditions: 1-phenylethanol (1.0 mmol), benzyl alcohol (1.1 mmol), cat. (0.01 mol%), base (0.2 mmol), and toluene (1 mL), 8 h. Conversion was determined by GC-MS analysis. ^bIsolated yield. ^cWithout catalyst **2d**.

Table S2. Solvent screening^a

^aReaction conditions: 1-phenylethanol (1.0 mmol), benzyl alcohol (1.1 mmol), cat. (0.01 mol%), KOH (0.2 mmol), and solvent (1 mL), 8 h. Conversion was determined by GC-MS analysis. ^bIsolated yield.

NMR characterization data of the isolated compounds

1,3-diphenylpropan-1-ol, **5a**.⁴ The compound was synthesized following the general procedure and isolated as pale-yellow liquid (191 mg, 92%). ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.16 (m, 10H), 4.63 (t, J = 6.2 Hz, 1H), 2.76–2.60 (m, 2H), 2.15-1.95 (m, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 144.7, 141.9, 128.6, 128.5, 128.5, 127.7, 126.0, 125.9, 73.9, 40.5, 32.1 ppm.

1-phenyl-3-(p-tolyl)propan-1-ol, 5b.⁴ The compound was synthesized following the general procedure and isolated as pale-yellow liquid (192 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.25 (m, 5H), 7.07 (s, 4H), 4.63 (t, *J* = 6.7 Hz, 1H), 2.80–2.49 (m, 2H), 2.30 (s, 3H), 2.16 –1.84 (m, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 144.7, 138.8, 135.4, 129.2, 128.6, 128.4, 127.7, 126.0, 73.9, 40.6, 31.7, 21.1 ppm.

3-(4-methoxyphenyl)-1-phenylpropan-1-ol, **5c**.⁴ The compound was synthesized following the general procedure and isolated as pale-yellow liquid (195 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.25 (m, 5H), 7.08 (d, *J* = 7.8 Hz, 2H), 6.80 (d, *J* = 7.8 Hz, 2H), 4.62 (t, *J* = 6.4 Hz, 1H), 3.74 (s, 3H), 2.69-2.54 (m, 2H), 2.12–1.91 (m, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 157.8, 144.7, 133.9, 129.4, 128.6, 127.7, 126.0, 113.9, 73.9, 55.3, 40.8, 31.2 ppm.

3-(4-fluorophenyl)-1-phenylpropan-1-ol, **5d**.⁴ The compound was synthesized following the general procedure and isolated as pale-yellow liquid (173 mg, 75%).¹H NMR (400 MHz, CDCl₃) δ 7.38-7.34 (m, 4H), 7.31–7.28 (m, 1H), 7.16–7.12 (m, 2H), 6.96 (t, *J* = 8.6 Hz, 2H), 4.67 (t, *J* = 7.7 Hz, 1H), 2.77–2.61 (m, 2H), 2.16–1.95 (m, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 162.6, 160.2, 144.6, 137.5, 129.9, 129.8, 128.7, 127.9, 126.0, 115.3, 115.1, 73.9, 40.7, 31.4 ppm.

3-(4-chlorophenyl)-1-phenylpropan-1-ol, **5e**.⁴ The compound was synthesized following the general procedure and isolated as pale-yellow liquid (215 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.26 (m, 5H), 7.21 (d, *J* = 8.1 Hz, 2H), 7.08 (d, *J* = 8.1 Hz, 2H), 4.61 (t, *J* = 6.4 Hz, 1H), 2.71-2.56 (m, 2H), 2.21 (s, 1H), 2.10–1.92 (m, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 144.5, 140.3, 131.6, 129.9, 128.6, 128.5, 127.8, 126.0, 73.7, 40.4, 31.4 ppm.

1-phenyl-3-(4-(trifluoromethyl)phenyl)propan-1-ol, 5f.⁴ The compound was synthesized following the general procedure and isolated as pale-yellow liquid (196 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.3 Hz, 2H), 7.27 (m, 4H), 7.20 (m, 3H), 4.59 (t, J =6 Hz, 1H), 2.78 – 2.56 (m, 2H), 2.09 – 1.84 (m, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 146.1, 144.4, 128.9, 128.7, 128.2, 127.9, 126.0, 125.4 (q, J =3.8 Hz), 127.4 (q, J =268.5 Hz) 73.8, 40.2, 32.0 ppm.

3-(4-isopropylphenyl)-1-phenylpropan-1-ol, **5g**.⁴ The compound was synthesized following the general procedure and isolated as yellow liquid (221 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 4.3 Hz, 4H), 7.32 (q, *J* = 3.9 Hz, 1H), 7.18 (q, *J* = 7.9 Hz, 4H), 4.71 (t, *J* = 6.0 Hz, 1H), 2.93 (p, *J* = 6.8 Hz, 1H), 2.80–2.63 (m, 2H), 2.20–2.01 (m, 3H), 1.29 (d, *J* = 6.9 Hz, 6H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 146.5, 144.7, 139.2, 128.6, 128.4, 127.7, 126.5, 126.1, 74.0, 40.6, 33.8, 31.7, 24.2 ppm.

3-(3-chlorophenyl)-1-phenylpropan-1-ol, **5h**.⁴ The compound was synthesized following the general procedure and isolated as yellow liquid (202 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 7.38 (s, 4H), 7.32–7.30 (m, 1H), 7.21 (s, 3H), 7.10 (s, 1H), 4.70 (s, 1H), 2.79–2.64 (m, 2H), 2.15–2.09 (m, 1H), 2.07-1.99 (m, 1H), 1.87 (s, 1H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 144.5, 144.0, 134.3, 129.7, 128.7, 127.9, 126.8, 126.2, 126.0, 73.8, 40.3, 31.9 ppm.

3-(3-methoxyphenyl)-1-phenylpropan-1-ol, **5i**.⁴ The compound was synthesized following the general procedure and isolated as yellow liquid (189 mg, 78%). ¹H NMR (400 MHz, CDCl₃) δ 7.25 (m, 3H), 7.21–7.17 (m, 1H), 7.10 (t, *J* = 7.7 Hz, 1H), 6.69 (d, *J* = 7.6 Hz, 1H), 6.64 (d, *J* = 7.0 Hz, 2H), 4.58 (t, *J* = 6.8 Hz, 1H), 3.68 (s, 3H), 2.67–2.51 (m, 2H), 2.07–1.87 (m, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 159.8, 144.7, 143.6, 129.5, 128.6, 127.7, 126.0, 121.0, 114.3, 111.3, 73.9, 55.2, 40.4, 32.2 ppm.

1-phenyl-3-(o-tolyl)propan-1-ol, **5j**.⁴ The compound was synthesized following the general procedure and isolated as yellow liquid (163 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 3.9 Hz, 4H), 7.29–7.24 (m, 1H), 7.12–7.08 (m, 4H), 4.72 (s, 1H), 2.79–2.72 (m, 1H), 2.65 –2.58 (m, 1H), 2.26 (s, 3H), 2.12–2.05 (m, 1H), 2.02–1.94 (m, 1H), 1.91 (m, 1H) ppm. ¹³C{¹H}

NMR (101 MHz, CDCl₃) *δ* 144.7, 140.1, 136.1, 130.3, 128.9, 128.7, 127.8, 126.1, 126.1, 126.0, 74.4, 39.4, 29.6, 19.4 ppm.

3-(naphthalen-1-yl)-1-phenylpropan-1-ol, **5k**.⁴ The compound was synthesized following the general procedure and isolated as yellow liquid (236 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 6.1 Hz, 1H), 7.80 (d, J = 6.1 Hz, 1H), 7.66 (d, J = 7.2 Hz, 1H), 7.44–7.41 (m, 2H), 7.37–7.21 (m, 7H), 4.73–4.63 (t, J = 6.2 Hz, 1H), 3.21–3.14 (m, 1H), 3.07–3.00 (m, 1H), 2.33–2.060 (m, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 144.6, 138.1, 134.0, 131.9, 128.8, 128.6, 127.7, 126.7, 126.0, 125.9, 125.6, 125.5, 123.9, 74.2, 39.9, 29.2 ppm.

3-(benzo[d][1,3]dioxol-5-yl)-1-phenylpropan-1-ol, **5l**.⁴ The compound was synthesized following the general procedure and isolated as white solid (223 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 7.30–7.17 (m, 5H), 6.64 (d, *J* = 7.9 Hz, 1H), 6.60 (s, 1H), 6.55 (d, *J* = 7.9 Hz, 1H), 5.82 (s, 2H), 4.58 (t, *J* = 7.6 Hz, 1H), 2.62–2.47 (m, 2H), 2.04–1.84 (m, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 147.7, 145.7, 144.7, 135.7, 128.6, 127.8, 126.0, 121.3, 109.0, 108.3, 100.9, 73.8, 40.8, 31.9 ppm.

3-(furan-2-yl)-1-phenylpropan-1-ol, **5m**.⁴ The compound was synthesized following the general procedure and isolated as brown oily liquid (129 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 7.26–7.17 (m, 6H), 6.19 (s, 1H), 5.91 (s, 1H), 4.59 (t, *J* = 6.6 Hz, 1H), 2.67–2.58 (m, 2H), 2.05–1.93 (m, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 155.7, 144.4, 141.1, 128.6, 127.8, 126.0, 110.2, 105.1, 73.8, 37.2, 24.5 ppm.

1-phenyl-3-(thiophen-2-yl)propan-1-ol, **5n**.⁴ The compound was synthesized following the general procedure and isolated as brown oily liquid (131 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.36 (m, 4H), 7.31–7.29 (m, 1H), 7.14 (d, *J* = 5.0 Hz, 1H), 6.94 (m, 1H), 6.82 (s, 1H), 4.73 (t, *J* = 5.9 Hz, 1H), 3.01–2.88 (m, 2H), 2.24–2.04 (m, 3H) ppm. ¹³C{¹H} NMR

(101 MHz, CDCl₃) δ 144.7, 144.4, 128.7, 127.8, 126.9, 126.0, 124.4, 123.2, 73.6, 40.8, 26.3 ppm.

3-cyclohexyl-1-phenylpropan-1-ol, **50**.⁴ The compound was synthesized following the general procedure and isolated as colorless oily liquid (100 mg, 46%). ¹H NMR (400 MHz, CDCl₃) δ 7.23–7.13 (m, 5H), 4.44 (t, *J* = 6.4 Hz, 1H), 2.40 (s, 1H), 1.69–1.56 (m, 7H), 1.22–0.96 (m, 7H), 0.79–0.74 (m, 1H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 145.0, 128.4, 127.4, 126.0, 74.9, 37.7, 36.5, 33.5, 33.4, 33.3, 26.7 ppm.

1-phenyloctan-1-ol, **5p**.⁴ The compound was synthesized following the general procedure and isolated as colorless oily liquid (122 mg, 59%). ¹H NMR (400 MHz, CDCl₃) δ 7.29– 7.26 (m, 4H), 7.22–7.18 (m, 1H), 4.55 (t, *J* = 6.6 Hz, 1H), 2.15 (s, 1H), 1.77–1.52 (m, 2H), 1.37–1.30 (m, 1H), 1.26–1.21 (m, 8H), 0.83 (t, *J* = 6.7 Hz, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 145.1, 128.5, 127.5, 126.0, 74.7, 39.2, 31.9, 29.6, 29.3, 25.9, 22.7, 14.2 ppm.

3-phenyl-1-(p-tolyl)propan-1-ol, **5q**.⁴ The compound was synthesized following the general procedure and isolated as colorless oily liquid (199 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 7.27–7.12 (m, 9H), 4.60 (t, *J* = 6.5 Hz, 1H), 2.74–2.58 (m, 2H), 2.33 (s, 3H), 2.17–1.92 (m, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 142.0, 141.7, 137.4, 129.3, 128.6, 128.5, 126.0, 125.9, 73.8, 40.5, 32.2, 21.2 ppm.

1-(4-chlorophenyl)-3-phenylpropan-1-ol, **5r**.⁴ The compound was synthesized following the general procedure and isolated as colorless oily liquid (207 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.26 (m, 6H), 7.18 (t, *J* = 7.8 Hz, 3H), 4.65 (t, *J* = 7.1 Hz, 1H), 2.75–2.61 (m, 2H), 2.13–1.95 (m, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 143.2, 141.6, 133.4, 128.8, 128.6, 128.5, 127.4, 126.1, 73.3, 40.6, 32.0 ppm.

1-(4-bromophenyl)-3-phenylpropan-1-ol, **5**s.⁴ The compound was synthesized following the general procedure and isolated as colorless oily liquid (253 mg, 87%).¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.3 Hz, 2H), 7.27 (t, *J* = 7.4 Hz, 2H), 7.17 (t, *J* = 8.8 Hz, 5H), 4.60 (t, *J* = 6.4 Hz, 1H), 2.73–2.59 (m, 2H), 2.13–1.92 (m, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 143.6, 141.6, 131.7, 128.6, 128.5, 127.8, 126.1, 121.4, 73.2, 40.5, 32.0 ppm.

1-(naphthalen-2-yl)-3-phenylpropan-1-ol, **5t**.⁴ The compound was synthesized following the general procedure and isolated as colorless oily liquid (233 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (m, 3H), 7.72 (s, 1H), 7.45–7.42 (m, 3H), 7.25 (t, *J* = 7.4 Hz, 2H), 7.16 (d, *J* = 7.4 Hz, 3H), 4.78 (t, *J* = 6.5 Hz, 1H), 2.77–2.61 (m, 2H), 2.21–2.04 (m, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 142.0, 141.9, 133.4, 133.1, 128.6, 128.0, 127.8, 126.3, 126.0, 124.8, 124.2, 74.0, 40.4, 32.1 ppm.

3-phenyl-1-(thiophen-2-yl)propan-1-ol, 5u.⁴ The compound was synthesized following the general procedure and isolated as yellow oily liquid (118 mg, 54%). ¹H NMR (400 MHz, CDCl₃) δ 7.29–7.22 (m, 3H), 7.16–7.16 (m, 3H), 6.96–6.94 (m, 2H), 4.89 (t, *J* = 6.4 Hz, 1H), 2.79–2.65 (m, 2H), 2.24–2.07 (m, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.6, 141.6, 128.6, 128.5, 126.8, 126.1, 124.8, 124.0, 69.6, 40.8, 32.1 ppm.

3-(4-bromophenyl)-1-(thiophen-2-yl)propan-1-ol, **5v**. The compound was synthesized following the general procedure and isolated as yellow oily liquid (155 mg, 52%). ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 7.9 Hz, 2H), 7.24 (s, 1H), 7.05 (d, *J* = 7.9 Hz, 2H), 6.95 (s, 2H), 4.87 (t, *J* = 5.6 Hz, 1H), 2.74–2.60 (m, 2H), 2.21–2.06 (m, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.4, 140.5, 131.6, 130.4, 126.8, 124.9, 124.1, 119.8, 69.4, 40.6, 31.5 ppm.

1-(4-chlorophenyl)-3-(o-tolyl)propan-1-ol, **5**w. The compound was synthesized following the general procedure and isolated as yellow oily liquid (156 mg, 60%).¹H NMR (400 MHz, CDCl₃) δ 7.28 (q, *J* = 9.0 Hz, 4H), 7.10 (s, 4H), 4.67 (t, *J* = 6.4 Hz, 1H), 2.75–2.55 (m, 2H), 2.24 (s, 3H), 2.04–1.89 (m, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 143.2, 139.8, 136.0, 133.4, 130.4, 128.8, 128.8, 127.4, 126.2, 126.1, 73.6, 39.4, 29.4, 19.3 ppm.

2-benzyl-1,3-diphenylpropan-1-one, **6a**. The compound was synthesized following the general procedure and isolated as yellow oily liquid (113 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 7.8 Hz, 2H), 7.30 (t, *J* = 7.4 Hz, 1H), 7.19 (t, *J* = 7.6 Hz, 2H), 7.12–7.06 (m, 4H), 7.01 (m, 6H), 3.92 (p, *J* = 7.1 Hz, 1H), 3.03 (dd, *J* = 13.7, 6.2 Hz, 2H), 2.70 (dd, *J* = 13.7, 6.2 Hz, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 203.4, 139.6, 137.4, 132.8, 129.1, 128.5, 128.2, 126.3, 50.6, 38.1 ppm. HRMS (ESI): C₂₂H₂₀O calcd. for [M+H]⁺: 301.1592 found: 301.1581.

2-benzyl-3-(4-isopropylphenyl)-1-phenylpropan-1-one, 6b. The compound was synthesized following the general procedure and isolated as yellow oily liquid (118 mg, 69%). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 7.8 Hz, 2H), 7.36 (t, *J* = 7.2 Hz, 1H), 7.23 (t, *J* = 7.2 Hz, 2H), 7.12 (t, *J* = 7.1 Hz, 3H), 7.05 (d, *J* = 7.3 Hz, 3H), 6.98 (s, 3H), 3.93 (m, 1H), 3.03 (m, 2H), 2.71 (m, 3H), 1.10 (d, *J* = 6.9 Hz, 6H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 203.6, 146.9, 139.8, 139.6, 137.6, 136.8, 132.8, 129.1, 129.0, 128.5, 128.3, 126.5, 126.3, 50.6, 38.2, 38.0, 33.8, 24.1 ppm. HRMS (ESI): C₂₃H₂₀O₃ calcd. for [M+H]⁺: 344.1491 found: 344.1479.

2-benzyl-3-(4-chlorophenyl)-1-phenylpropan-1-one, **6c**. The compound was synthesized following the general procedure and isolated as yellow oily liquid (100 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 7.5 Hz, 2H), 7.40 (p, *J* = 7.4 Hz, 1H), 7.27 (p, *J* = 6.7 Hz, 2H), 7.10 (dt, *J* = 23.4, 7.3 Hz, 7H), 6.98 (d, *J* = 7.9 Hz, 2H), 3.90 (m, 1H), 3.03 (m, 2H), 2.70 (m, 2H) ppm. HRMS (ESI): C₂₂H₁₉ClO calcd. for [M+H]⁺: 335.1203 found: 335.1194.

2-(4-isopropylbenzyl)-1-phenyl-3-(p-tolyl)propan-1-one, **6d**. The compound was synthesized following the general procedure and isolated as yellow oily liquid (116 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (q, J = 8.3, 7.8 Hz, 2H), 7.39–7.33 (m, 1H), 7.25 (q, J = 7.0 Hz, 2H), 6.95 (d, J = 13.9 Hz, 8H), 3.90 (p, J = 7.8 Hz, 1H), 3.01 (m, 2H), 2.76–2.61 (m, 3H), 2.17 (s, 3H), 1.10 (d, J = 6.9 Hz, 6H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 203.5, 146.9, 137.6, 136.9, 136.6, 135.8, 132.8, 129.2, 129.0, 128.5, 128.3, 127.8, 126.5, 50.6, 37.9, 37.8, 33.8, 24.1, 21.1 ppm. HRMS (ESI): C₂₆H₂₈O calcd. for [M+H]⁺: 357.2140 found: 357.2210.

3-(benzo[d][1,3]dioxol-5-yl)-2-benzyl-1-phenylpropan-1-one, **6e**. The compound was synthesized following the general procedure and isolated as yellow oily liquid (124 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 7.8 Hz, 2H), 7.39 (t, *J* = 7.3 Hz, 1H), 7.27 (t, *J* = 7.5 Hz, 2H), 7.13 (d, *J* = 7.2 Hz, 2H), 7.06 (d, *J* = 7.3 Hz, 3H), 6.60–6.47 (m, 3H), 5.78 (s, 2H),

3.88 (p, J = 7.0 Hz, 1H), 3.00 (m, 2H), 2.68 (m, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 203.4, 147.7, 146.1, 139.6, 137.6, 133.4, 132.9, 129.1, 128.6, 128.3, 126.4, 122.2, 109.5, 108.3, 100.9, 50.9, 38.4, 38.0 ppm. HRMS (ESI): C₂₃H₂₀O₃ calcd. for [M+H]⁺: 345.1491 found: 345.1479.

2-benzyl-3-(4-isopropylphenyl)-1-(p-tolyl)propan-1-one, **6f**. The compound was synthesized following the general procedure and isolated as yellow oily liquid (121 mg, 68%). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 6.6 Hz, 2H), 7.09 (d, *J* = 7.1 Hz, 2H), 7.02 (t, *J* = 7.7 Hz, 5H), 6.96 (s, 4H), 3.89 (s, 1H), 3.09–2.93 (m, 2H), 2.70 (m, 3H), 2.22 (s, 3H), 1.08 (d, *J* = 7.0 Hz, 6H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 203.0, 146.8, 146.7, 143.6, 139.9, 139.7, 137.1, 136.9, 129.2, 129.1, 129.0, 128.4, 126.5, 126.2, 50.3, 38.1, 38.0, 33.8, 24.1, 21.6 ppm. HRMS (ESI): C₂₆H₂₈O calcd. for [M+H]⁺: 357.2218 found: 357.2212.

N-methylaniline, **8a**.⁵ The compound was synthesized following the general procedure and isolated as yellow liquid (45 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 7.22 (t, *J* = 7.8 Hz, 2H), 6.74 (t, *J* = 7.3 Hz, 1H), 6.64 (d, *J* = 8.0 Hz, 2H), 3.70 (s, 1H), 2.85 (s, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 149.5, 129.3, 117.4, 112.5, 30.8 ppm.

4-methyl-N-methylaniline, **8b**.⁵ The compound was synthesized following the general procedure and isolated as yellow liquid (53 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 7.06 (d, J = 7.9 Hz, 2H), 6.59 (d, J = 8.0 Hz, 2H), 3.58 (s, 1H), 2.85 (s, 3H), 2.30 (s, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 147.3, 129.8, 126.5, 112.7, 31.2, 20.5 ppm.

4-methoxy-N-methylaniline, **8c**.⁵ The compound was synthesized following the general procedure and isolated as yellow liquid (63 mg, 92%). ¹H NMR (400 MHz, CDCl₃) δ 6.82 (d,

J = 8.6 Hz, 2H), 6.60 (d, J = 8.6 Hz, 2H), 3.77 (s, 3H), 3.16 (bs, 1H), 2.81 (s, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.1, 143.8, 114.9, 113.7, 55.9, 31.6 ppm.

4-chloro-N-methylaniline, **8d**.⁵ The compound was synthesized following the general procedure and isolated as yellow liquid (59 mg, 83%). ¹H NMR (400 MHz, CDCl₃) δ 7.14 (d, J = 8.6 Hz, 2H), 6.53 (d, J = 8.5 Hz, 2H), 3.72 (s, 1H), 2.81 (s, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.0, 129.1, 121.9, 113.5, 30.9 ppm.

4-bromo-N-methylaniline, **8e**.⁵ The compound was synthesized following the general procedure and isolated as yellow liquid (81 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, J = 8.6 Hz, 2H), 6.45 (d, J = 8.7 Hz, 2H), 2.78 (s, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.4, 131.9, 114.0, 108.8, 30.8 ppm.

3-methoxy-N-methylaniline, **8f**.⁵ The compound was synthesized following the general procedure and isolated as yellow liquid (62 mg, 91%). ¹H NMR (400 MHz, CDCl₃) δ 7.14 (t, J = 8.1 Hz, 1H), 6.33 (d, J = 8.1 Hz, 1H), 6.27 (d, J = 9.2 Hz, 1H), 6.21 (s, 1H), 3.82 (s, 3H), 2.84 (s, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.9, 150.8, 129.9, 105.7, 102.3, 98.3, 55.1, 30.7 ppm.

3-chloro-N-methylaniline, **8g**.⁵ The compound was synthesized following the general procedure and isolated as yellow liquid (60 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 7.09 (t, J = 9.0 Hz, 1H), 6.68 (d, J = 7.8 Hz, 1H), 6.58 (d, J = 1.7 Hz, 1H), 6.48 (d, J = 8.2 Hz, 1H), 3.79 (s, 1H), 2.82 (s, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.5, 135.1, 130.2, 117.1, 112.0, 110.9, 30.6 ppm.

3-bromo-N-methylaniline, **8h**.⁵ The compound was synthesized following the general procedure and isolated as yellow liquid (76 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 7.02 (t,

J = 8.0 Hz, 1H), 6.82 (d, J = 7.7 Hz, 1H), 6.74 (s, 1H), 6.51 (d, J = 8.1 Hz, 1H), 3.78 (s, 1H), 2.81 (s, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.7, 130.5, 123.4, 120.0, 114.9, 111.3, 30.6 ppm.

N-methyl-2,3-dihydrobenzo[b][1,4]dioxin-6-amine, **8i**.⁵ The compound was synthesized following the general procedure and isolated as yellow liquid (74 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 6.72 (d, J = 8.5 Hz, 1H), 6.20–6.13 (m, 2H), 4.23 (dd, J = 5.6, 2.8 Hz, 2H), 4.18 (dd, J = 5.5, 2.9 Hz, 2H), 2.77 (s, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 144.6, 144.1, 135.6, 117.6, 106.5, 101.1, 64.8, 64.3, 31.5 ppm.

N-methylnaphthalen-1-amine, **8**j.⁵ The compound was synthesized following the general procedure and isolated as yellow liquid (64 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 7.9 Hz, 1H), 7.80 (d, J = 8.1 Hz, 1H), 7.47 (dt, J = 17.3, 7.9 Hz, 3H), 7.31 (d, J = 8.2 Hz, 1H), 6.65 (d, J = 7.5 Hz, 1H), 4.43 (s, 1H), 3.04 (s, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 144.6, 134.3, 128.7, 126.8, 125.8, 124.8, 123.5, 119.9, 117.4, 31.1 ppm.

N-methylpyridin-2-amine, **8k**.⁵ The compound was synthesized following the general procedure and isolated as yellow liquid (35 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 5.5 Hz, 1H), 7.40 (t, J = 7.7 Hz, 1H), 6.58–6.50 (m, 1H), 6.35 (d, J = 8.4 Hz, 1H), 4.73 (s, 1H), 2.88 (s, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 159.7, 148.1, 137.5, 112.7, 106.2, 29.1 ppm.

N-methylpyridin-3-amine, **81**.⁵ The compound was synthesized following the general procedure and isolated as yellow liquid (38 mg, 71%). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.93 (s, 1H), 7.11–7.04 (m, 1H), 6.84 (d, *J* = 8.2 Hz, 1H), 3.88 (s, 1H), 2.83 (s, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 145.3, 138.6, 135.8, 123.8, 118.1, 30.3 ppm.

References

- 1. P. M. Illam, V. K. Singh, Priya and A, Rit, J. Organomet. Chem. 2021, 951, 122008.
- 2. S. N. R. Donthireddy, P. M. Illam and A. Rit, Inorg. Chem. 2020, 59, 1835–1847.

- 3. Y. Pan, Y. Gong, Y. Song, W. Tong and H. Gong, Org. Biomol. Chem. 2019, 17, 4230–4233.
- 4. S. Shee, B. Paul, D. Panja, B. C. Roy, K. Chakrabarti K. Ganguli, A. Das, G. K. Das, and Sabuj Kundu, *Adv. Synth. Catal.* 2017, **359**, 3888–3893.
- 5. P. Piehl, R, Amuso, A. Spannenberg, B. Gabriele, H. Neumann and M. Beller, *Catal. Sci. Technol.*, 2021, **11**, 2512–2517.

NMR spectra of the isolated compounds

Figure S1. ¹H NMR spectrum of complex **2d** in CDCl₃. # represents solvent impurity of water in CDCl₃.

Figure S3. ¹H NMR spectrum of compound 5a in CDCl₃.

Figure S5. ¹H NMR spectrum of compound 5b in CDCl₃.

Figure S6. ¹³C{¹H} NMR spectrum of compound 5b in CDCl₃.

Figure S7. ¹H NMR spectrum of compound 5c in CDCl₃.

Figure S8. ¹³C{¹H} NMR spectrum of compound 5c in CDCl₃.

Figure S9. ¹H NMR spectrum of compound 5d in CDCl₃.

Figure S10. ¹³C{¹H} NMR spectrum of compound 5d in CDCl₃.

Figure S11. ¹H NMR spectrum of compound 5e in CDCl₃.

Figure S12. ¹³C{¹H} NMR spectrum of compound 5e in CDCl₃.

Figure S13. ¹H NMR spectrum of compound 5f in CDCl₃.

Figure S14. ¹³C{¹H} NMR spectrum of compound 5f in CDCl₃.

Figure S15. ¹H NMR spectrum of compound 5g in CDCl₃.

Figure S16. ¹³C{¹H} NMR spectrum of compound 5g in CDCl₃.

Figure S17. ¹H NMR spectrum of compound 5h in CDCl₃.

Figure S18. ¹³C{¹H} NMR spectrum of compound 5h in CDCl₃.

Figure S19. ¹H NMR spectrum of compound 5i in CDCl₃.

Figure S20. ¹³C{¹H} NMR spectrum of compound 5i in CDCl₃.

Figure S21. ¹H NMR spectrum of compound 5j in CDCl₃.

Figure S22. ¹³C{¹H} NMR spectrum of compound 5j in CDCl₃.

Figure S23. ¹H NMR spectrum of compound 5k in CDCl₃.

Figure S24. ¹³C{¹H} NMR spectrum of compound 5k in CDCl₃.

Figure S25. ¹H NMR spectrum of compound 5l in CDCl₃.

Figure S27. ¹H NMR spectrum of compound 5m in CDCl₃.

Figure S29. ¹H NMR spectrum of compound 5n in CDCl₃.

Figure S30. ¹³C{¹H} NMR spectrum of compound 5n in CDCl₃.

Figure S31. ¹H NMR spectrum of compound 50 in CDCl₃.

Figure S32. ¹³C{¹H} NMR spectrum of compound 50 in CDCl₃.

Figure S33. ¹H NMR spectrum of compound 5p in CDCl₃.

Figure S35. ¹H NMR spectrum of compound 5q in CDCl₃.

Figure S36. ¹³C{¹H} NMR spectrum of compound 5q in CDCl₃.

Figure S37. ¹H NMR spectrum of compound 5r in CDCl₃.

Figure S38. ¹³C{¹H} NMR spectrum of compound 5r in CDCl₃.

Figure S39. ¹H NMR spectrum of compound 5s in CDCl₃.

Figure S40. ¹³C{¹H} NMR spectrum of compound 5s in CDCl₃.

Figure S41. ¹H NMR spectrum of compound 5t in CDCl₃.

Figure S42. ¹³C{¹H} NMR spectrum of compound 5t in CDCl₃.

Figure S43. ¹H NMR spectrum of compound 5u in CDCl₃.

Figure S44. ¹³C{¹H} NMR spectrum of compound 5u in CDCl₃.

Figure S45. ¹H NMR spectrum of compound 5v in CDCl₃.

Figure S46. ¹³C{¹H} NMR spectrum of compound 5v in CDCl₃.

Figure S47. ¹H NMR spectrum of compound 5w in CDCl₃.

Figure S49. ¹H NMR spectrum of compound 6a in CDCl₃.

Figure S51. ¹H NMR spectrum of compound 6b in CDCl₃.

Figure S53. ¹H NMR spectrum of compound 6c in CDCl₃.

Figure S54. ¹H NMR spectrum of compound 6d in CDCl₃.

Figure S55. ¹³C{¹H} NMR spectrum of compound 6d in CDCl₃.

Figure S57. ¹³C{¹H} NMR spectrum of compound **6e** in CDCl₃.

Figure S58. ¹H NMR spectrum of compound 6f in CDCl₃.

Figure S59. ¹³C{¹H} NMR spectrum of compound 6f in CDCl₃.

Figure S61. ¹³C{¹H} NMR spectrum of compound 8a in CDCl₃.

Figure S63. ¹³C{¹H} NMR spectrum of compound 8b in CDCl₃.

Figure S65. ¹³C{¹H} NMR spectrum of compound 8c in CDCl₃.

Figure S67. ¹³C{¹H} NMR spectrum of compound 8d in CDCl₃.

Figure S69. $^{13}C{^{1}H}$ NMR spectrum of compound 8e in CDCl₃.

Figure S71. ¹³C{¹H} NMR spectrum of compound 8f in CDCl₃.

Figure S73. ¹³C{¹H} NMR spectrum of compound 8g in CDCl₃.

Figure S75. ¹³C{¹H} NMR spectrum of compound 8h in CDCl₃.

Figure S77. ¹³C{¹H} NMR spectrum of compound **8i** in CDCl₃.

Figure S79. ¹³C{¹H} NMR spectrum of compound 8j in CDCl₃.

Figure S81. ¹³C{¹H} NMR spectrum of compound 8k in CDCl₃.

Figure S83. ¹³C{¹H} NMR spectrum of compound 8l in CDCl₃.

Mechanistic studies

Figure S84. Effect of temperature on the reaction progress. Reaction conditions: 1-phenylethanol (1 mmol), benzyl alcohol (1.1 mmol), **2d** (0.01 mol%), KOH (0.20 mmol), and toluene (1 mL), 80-120 °C.

Figure S85. Plot of reaction progress with time. Reaction conditions: 1-phenylethanol (1 mmol), benzyl alcohol (1.1 mmol), cat. **2d** (0.02 mol%), KOH (0.20 mmol), and toluene (1 mL), 120 °C.

Calculation of Green metrics:

Total: 122.17 + 108.14 = 230.31

Product yield: 83%

Reactant 1	1-phenylethan-1-ol	1.21 g	FW 122.17
Reactant 2	4-bromobenzyl alcohol	1.14 g	FW 108.14
Base	КОН	0.112 g	FW 56.11
Solvent	Toluene	0.867 g	-
Auxiliary	-	-	-
Product	1,3-diphenylpropan-1-ol	1.74 g	FW 212.19
Byproduct	Water	0.036 g	FW 18.01

Product yield = 83%

Atom economy: 212.29/230.31 = 92.2%

Atom efficiency: 83 X (92.2/100) = 76.5%

Carbon efficiency: $(15/15) \times 100 = 100\%$

Reaction mass efficiency: [1.74 g / (1.21 g + 1.14 g)] X 100 = 88.7%

Calculation of order of the reaction with respect to 1-phenylethanol:

3a: 0.5 mmol, **4a**: 0.55 mmol, **2d**: 0.00005 mmol, KOH: 0.1 mmol

entry	Time (min)	Concentration of 3a (mM)
1	120	160
2	150	140
3	180	117
4	210	103
5	240	83
6	270	73

3a: 0.55 mmol, **4a**: 0.605 mmol, **2d**: 0.000055 mmol, KOH: 0.11 mmol

entry	Time (min)	Concentration of 3a (mM)
1	120	231
2	150	205
3	180	180
4	210	167
5	240	150
6	270	128

Figure S86. Plot of concentration variation of 3a with time.

Considering steady state approximation for 1-phenylethanol, Slope = $k[3a]^n$ From 0.5 mmol scale reaction, $-0.5905 = k \times [0.5]^n$ From 0.55 mmol scale reaction, $-0.66 = k \times [0.55]^n$

 $\begin{array}{l} -0.66 / -0.5905 = [0.55 / 0.5]^n \implies 1.1176 = [1.1]^n \\ \log(1.1176) = n \, \log(1.1) \implies 0.0483 = n \times 0.0414 \\ n = 1.17 \approx 1 \implies \text{Rate w.r.t. 1-phenylethanol} = k \, [\textbf{3a}]^1 \end{array}$

Calculation of order of the reaction with respect to 2d:

In order to find the order of the reaction with respect to catalyst concentration, initial rate method was used. For that, different sets of reactions were conducted by varying the catalyst concentration (0.005–0.02 mol%) keeping the other factors constant and the amount of product formed initially (upto 150 min) was calculated (from the conversions obtained from GC-MS analysis) in each case. Initial rates were calculated from the plots of product concentration vs time. Then, the initial rates were plotted against the catalyst concentration. The straight line nearly passing through origin indicated that the reaction is first order with respect to [**2d**].

Entry	3a	4 a	2d	2d	KOH	Toluene
	(mmol)	(mmol)	(mol%)	(M)	(mmol)	(mL)
1	0.5	0.55	0.005	0.0000125	0.10	2.0
2	0.5	0.55	0.01	0.000025	0.10	2.0
3	0.5	0.55	0.02	0.00005	0.10	2.0
4	0.5	0.55	0.03	0.000075	0.10	2.0

Entry	Time	Concentration of product (M)			
	(min)	0.005	0.01	0.025	0.05
		mol%	mol%	mol%	mol%
1	30	0.0075	0.0125	0.0225	0.03
2	60	0.025	0.035	0.055	0.0625
3	90	0.045	0.0575	0.08	0.09
4	120	0.075	0.0825	0.1125	0.1275
5	150	0.1075	0.115	0.13	0.155

Figure S87. Plots to determine the rate of reaction w.r.to [2d]: a) Total product concentration (M) *vs* time with different concentrations of 2d. b) Initial rate (M/min) *vs* [2d] (M).

Deuterium labelling studies

Procedure for the β-alkylation of 1-phenylethanol with benzyl alcohol-d2: A catalyst stock solution (0.01 mol%) in acetonitrile was taken in a pre-dried Schlenk tube. After removing all the volatiles in vacuum, 1-phenylethanol (0.5 mmol), benzyl alcohol-d₂ (0.55 mmol), and KOH (0.10 mmol, 20 mol%) followed by toluene (1 mL) were added. The reaction tube was then heated in oil bath (bath temperature 120 °C) for 8 h. After the completion of reaction, the reaction mixture was cooled to room temperature and subjected to column chromatography using hexane/ethyl acetate as eluent. The obtained isolated product (70% yield) was analyzed by ¹H NMR to find out the deuterium incorporation percentage.

Figure S88. ¹H NMR spectrum of isolated product 5a-D.

Procedure for detecting an in-situ generated Ru-H species: An oven dried pressure tube (25 mL) with a magnetic stirring bar was charged with **2c** (0.0565 mmol, 30 mg) and KOH (0.565 mmol, 32 mg). Then, 1-phenylethanol (0.565 mmol, 68 μ L) and toluene (1 mL) were added and heated at 120 °C for 2 h. After the specified time, the reaction mixture was cooled, evaporated to dryness and the ¹H NMR spectrum was recorded in CD₃CN.

Figure S89. ¹H NMR spectrum of in-situ generated putative Ru-H species by reacting the complex 2c with 1-phenylethanol in CD_3CN (*). # represents the quartet corresponds to CH proton of 1-phenylethanol.

Figure S90. ¹H NMR spectrum of the reaction mixture of the standard reaction using the complex 2c in CDCl₃ (*) after 2 h.

Figure S91. ESI-Mass spectrum of the reaction mixture containing **2c** (1 mol%), KOH (20 mol%), 1-phenylethanol (0.5 mmol), benzyl alcohol (0.55 mmol) in toluene (1 mL) stirred at 120 °C for 2 h.

Table S3. Crystallographic data for the compound **2d**

Compound	2d
CCDC No.	2102241
Empirical formula	$C_{20}H_{23}BrN_4O_2Ru$
Formula weight	532.40
Crystal system	Monoclinic
Space group	P21/n
a (Å)	7.9180(2)
b (Å)	17.8000(5)
c (Å)	14.7128(5)
α (°)	90°
β (°)	95.2089(14)°
γ (°)	90°
V (Å ³)	2065.06(11)
Ζ	4
D calc (Mg/m ³)	1.712
F (000)	1064
μ (mm ⁻¹)	2.717
θ Range (°)	2.68-26.02
Crystal size (mm)	0.150 x 0.120 x 0.100
No. of total reflns collected	3650
No. of unique reflns $[I>2\sigma(I)]$	2963
Data/restraints/parameters	3650 / 0 / 257
Goodness-of-fit on F ²	1.055
Final R indices $(I > 2\sigma(I))$	0.0600, 0.0561
R indices (all data)	0.0407, 0.0280