Electronic Supplementary Information (ESI)

Bifunctional heterogeneous catalysts derived from the coordination of adenosine monophosphate to $\mathrm{Sn}(\mathrm{IV})$ for effective conversion of

 sucrose to 5-hydroxymethylfurfuralChenyu Wang, Lutong Jiao, Han Meng, Peijun Ji ${ }^{*}$

College of Chemical Engineering, Beijing University of Chemical Technology,
Beijing 100029, PR China

Scheme S1. Molecular structure of adenosine monophosphate.

Figure S1. SEM image of AMP.

[^0]

Figure S2. Pore size distribution of $\mathrm{Sn}-\mathrm{AMP}_{0.5}$.
Figure S 3 shows the Raman spectra for fresh $\mathrm{Sn}-\mathrm{AMP}_{0.5}$ and $\mathrm{Sn}-\mathrm{AMP}_{0.5}$ after interacting with glucose ($\mathrm{Sn}-\mathrm{AMP}_{0.5}+$ glucose) and with fructose $\left(\mathrm{Sn}-\mathrm{AMP}_{0.5}+\right.$ fructose). The peaks at 1318 and $1424 \mathrm{~cm}^{-1}$ are attributed to the adenine ring breathing mode. ${ }^{\mathrm{S} 1, \mathrm{~S} 2}$ The peaks at 1340 and 1404 cm^{-1} are attributed to the sugar stretching mode. ${ }^{\mathrm{S1}, \mathrm{~S} 2}$ The interactions of glucose and fructose with $\mathrm{Sn}-\mathrm{AMP}_{0.5}$ resulted in the intensity changes of these peaks. The peaks at 965 and 1015 cm^{-1} of fresh $\mathrm{Sn}-\mathrm{AMP}_{0.5}$ are attributed to $\mathrm{OH}-\mathrm{P}$ and N1-C6. ${ }^{\mathrm{S1}, \mathrm{~S} 2}$ These peaks did not appear in the spectra of $\mathrm{Sn}-\mathrm{AMP}_{0.5}+$ glucose and $\mathrm{Sn}-\mathrm{AMP}_{0.5}+$ fructose, attributed the interactions of glucose and fructose with the phosphate and N1 of AMP. The Raman spectra can prove the hydrogen bonding interactions of glucose and fructose with $\mathrm{Sn}-\mathrm{AMP}_{0.5}$.

Figure S3. Raman spectra in the region of $900-1800 \mathrm{~cm}^{-1}$ for fresh $\mathrm{Sn}-\mathrm{AMP}_{0.50}$ (black), $\mathrm{Sn}-\mathrm{AMP}_{0.5}$ after interacting with glucose (blue), and $\mathrm{Sn}-\mathrm{AMP}_{0.5}$ after interacting with fructose (oliver).
Raman spectra were recorded using a Raman microscope (Kaiser Optical Systems, Inc., Ann Arbor, MI, USA) with 785 nm laser excitation.

Table S1. FTIR spectra data of AMP and $\mathrm{Sn}-\mathrm{AMP}_{0.5}$.

	AMP $\left(\mathrm{cm}^{-1}\right)$	Sn-AMP $\left(\mathrm{cm}^{-1}\right)$
NH_{2} - scissor mode	1695	1695
NH_{2} - bending mode	1650	1650
C4-C5 skeletal vibrations	1595	-
pyrimidine ring vibration	1557	1548
imidazole	1504	1514
$\mathrm{~N} 7-\mathrm{C} 8$	1463	1463
$\mathrm{C} 6-\mathrm{N} 1$	1421	1421
pyrimidine	1385	1407
C6-NH2 deformation	1280	-
	1198	
ribose C-O stretching vibration	1102	
	1036	
P-O-H vibration	1062,985	

Table S2. During the synthesis process for the Sn -AMP samples, the pH of the solutions after hydrothermal treatment.

	Sn-AMP	Sn-125	Sn-AMP $_{0.25}$	Sn-AMP $_{0.5}$
pH	1.29	1.34	Sn-AMP $_{0.75}$	

Table S3. Comparison of catalytic activity of Sn-AMP catalysts for dehydration of glucose.

Entry	Catalyst	$\mathrm{X}(\%)$	$\mathrm{Y}_{\text {HMF }}(\%)$	$\mathrm{Y}_{\text {fructose }}(\%)$	$\mathrm{Y}_{\mathrm{FA}}(\%)$
1	$\mathrm{Sn}-\mathrm{AMP}_{0.125}$	95.7	54.0	4.2	1.8
2	$\mathrm{Sn}_{\mathrm{H}} \mathrm{AMP}_{0.25}$	96.8	62.1	5.0	2.1
3	$\mathrm{Sn}^{-\mathrm{AMP}_{0.5}}$	96.4	63.5	4.1	2.0
4	Sn-AMP	0.75	97.1	56.4	3.1

Reaction condition: glucose (200 mg), Sn -AMP (50 mg), 5 mL of solvent, water/THF (v:v 1:4), $160^{\circ} \mathrm{C}$, 5 h .
Table S4. Comparison of Sn -AMP with other catalysts. (Yield: HMF yield, Sel.: HMF selectivity)

saccharide	Solvent	Catalyst	T/ ${ }^{\circ} \mathrm{C}$	t / h	Yield	Sel.	Ref.
ucrose			170	4	61.6\%	$\geq 64.8 \%$	
glucose	water/DMSO/HCL	$\mathrm{Sn}-\mathrm{CP}$	170	4	63.9\%	65.4\%	S3
sucrose glucose	water/THF/ NaCl	Sn-Mont	160	3	$\begin{aligned} & \hline 43.6 \% \\ & 41.7 \% \end{aligned}$		S4
sucrose glucose	water/Dioxane	Sn- β /Amberlyst-131	90	$\begin{aligned} & 10 \\ & 16 \end{aligned}$	$\begin{aligned} & 60.0 \% \\ & 56.0 \% \end{aligned}$		S5
sucrose glucose	water/THF/ NaCl	Phosphated TiO_{2}	175	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 43.0 \% \\ & 53.5 \% \end{aligned}$	$\begin{aligned} & 45.3 \% \\ & 54.3 \% \end{aligned}$	S6
sucrose glucose	water /GVL/ NaCl	APG- $\mathrm{SO}_{3} \mathrm{H}$	180	4	$\begin{aligned} & \hline 56.2 \% \\ & 52.9 \% \end{aligned}$		S7
sucrose glucose	water/THF	[MimAM]nH3-nPW ${ }_{12} \mathrm{O}_{40}$	160	7.5	$\begin{aligned} & \hline 23.5 \% \\ & 39.2 \% \end{aligned}$	$\begin{aligned} & \hline 24.9 \% \\ & 39.5 \% \end{aligned}$	S8
sucrose glucose	water/THF water/THF	$\mathrm{Sn}-\mathrm{AMP}_{0.5}$	$\begin{aligned} & 160 \\ & 160 \end{aligned}$	4.5 5	$\begin{aligned} & \hline 62.9 \% \\ & 67.5 \% \end{aligned}$	$\begin{aligned} & \hline 63.0 \% \\ & 69.6 \% \end{aligned}$	This work

References

S1 J. Kundu, O. Neumann, B. G. Janesko, D. Zhang, S. Lal, A. Barhoumi, G. E. Scuseria and, Halas, N. J. J. Phys. Chem. C 2009, 113, 14390-14397.

S2 B. Hernandez, R. Navarro, A. Hernanz and G. Vergoten, Biopolymers 2002, 67, 440-55.
S3 N. Jiang, W. Qi, Z. Wu, R. Su and Z. He, Catal. Today, 2018, 302, 94-99.
S4 J. Wang, J. Ren, X. Liu, J. Xi, Q. Xia, Y. Zu, G. Lu and Y. Wang, Green Chem., 2012, 14, 2506-2512.

S5 Q. Guo, L. Ren, S. M. Alhassan and M. Tsapatsis, Chem Commun (Camb), 2019, 55, 1494214945.

S6 K. T. V. Rao, S. Souzanchi, Z. Yuan and C. Xu, New J. Chem., 2019, 43, 12483-12493.
S7 S. Sun, L. Zhao, J. Yang, X. Wang, X. Qin, X. Qi and F. Shen, ACS Sustain. Chem. Eng., 2020, 8, 7059-7067.

S8 P. Zhao, Y. Zhang, Y. Wang, H. Cui, F. Song, X. Sun and L. Zhang, Green Chem., 2018, 20, 1551-1559.

[^0]: Corresponding author. E-mail address: jipj@mail.buct.edu.cn

