Efficient metal borate catalysts for oxidative dehydrogenation of propane

Heming Qian,^a Fulin Sun,^a Wei Zhang,^{*a} Chao Huang,^b Yingjun Wang,^a and Kegong Fang^{*b}

- a. College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China. E-mail: <u>99095871@qq.com</u>
- b. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China. E-mail: kgfang@sxicc.ac.cn

Figure S1. Rietveld fitting diagram of XRD of the catalysts: (a) CoB₄O₇, (b) Ni₃B₂O₆.

Figure S2. N_2 adsorption-desorption isotherms and pore size distribution of CoB_4O_7 and $Ni_3B_2O_6$ catalysts: (a) CoB_4O_7 , (b) $Ni_3B_2O_6$.

Figure S3. Influence of temperature on the ODHP conversion of propane over quartz; Reaction conditions: temperature, 490 °C; quartz weight, 600 mg; gas feed $C_3H_8/O_2/N_2$ with 2.5:1:4 volume ratio; flow rate, 30 mL min⁻¹.

Figure S4. TEM images of CoB_4O_7 and $Ni_3B_2O_6$ catalysts: (a) fresh CoB_4O_7 , (b) spent CoB_4O_7 , (c) fresh $Ni_3B_2O_6$, (d) spent $Ni_3B_2O_6$.

Figure S5. XRD patterns of fresh and spent catalysts: (a) CoB_4O_7 , (b) $Ni_3B_2O_6$.

Figure S6. ¹¹B MAS-NMR spectra (14.1 T) of the borate catalysts: (a) CoB₄O₇-Fresh, (b) CoB₄O₇-Spent.

Figure S7. B 1s XPS spectra of fresh and spent catalysts: (a) CoB_4O_7 , (b) $Ni_3B_2O_6$.

Figure S8. O 1s XPS spectra of fresh and spent catalysts: (a) CoB₄O₇, (b) Ni₃B₂O₆.

Figure S9. Zeta potentials of the catalysts.

Num.	Catalysts	Temp	WHSV	Conversion (%)	Selectivity (%)				Yield (%)	Ref.		
		(°C)	(g _{C3H8} g _{cat} ⁻¹ h ⁻¹)	C ₃ H ₈	C₃H ₆	C ₂ H ₄	CH4	со	CO ₂	Olefins	C₃H ₆	
1	h-BN	490	3.96	14.0	79.0	12.0	-	-	-	91.0	11.1	1
2	h-BN	560	-	11.3	71.8	20.0				91.8	8.1	2
3	В	490	90.0	16	77.9	10.0	1.4	6.6	3.6	87.9	12.4	3
4	NiB	490	8.04	6.1	85.4	9.3	2.0	2.2	0.3	94.7	5.2	3
5	Co ₂ B/Co ₃ B	490	6.92	3.2	87.9	7.9	1.8	1.5	0.2	95.7	2.8	3
6	BOS-10	500	9.4	31.5	64.0	19.1	0	14.8	2.1	87.4	20.1	4
8	BPO4 (bulk)	550	9.4	15.3	79.8	11.2	-	-	-	91.0	12.2	5
9	BPO ₄ (OM)	515	9.4	14.3	82.5	9.0	-	-	-	91.5	11.8	5
10	Boronhyperd-	450	28.2	10.6	64.1	7.2	-	9.7	2.5	71.3	6.8	6
	oped silicon											
15	Ni ₃ B ₂ O ₆	510	5.9	6.3	81.9	12.0	2.3	3.3	0.5	91.9	5.2	This
												work
16	Ni₃B₂O ₆ -200 h	510	5.9	13.2	77.4	16.4	3.1	2.4	0.5	93.7	10.2	This
												work
18	CoB ₄ O ₇	490	5.9	9.1	81.7	11.7	1.5	4.4	0.7	93.4	7.4	This
												work
19	CoB ₄ O ₇ -200 h	490	5.9	17.3	74.3	17.1	1.8	6.2	0.6	89.5	12.8	This
												work

Table S1 Catalytic performance of the CoB_4O_7 and $Ni_3B_2O_6$ catalyst in comparison with representative ODHP catalysts in the literatures.

Table S2 The content of three types of boron species in fresh and spent catalysts measured at 14.1 T

Samples		R	Ratio of boron species (%)			
		^[3] B-ring	^[3] B non-ring	^[4] B		
CoB ₄ O ₇	Fresh	33.1	63.6	3.3		
	Spent	36.5	58.7	4.8		
$Ni_3B_2O_6$	Fresh	32.1	63.8	4.1		
	Spent	35.9	62.5	1.7		

Table S3 Summary of XPS data for the CoB_4O_7 and $Ni_3B_2O_6$ catalysts

Samples			Content (%)				
		Со	Ni	0	В		
CoB ₄ O ₇	Fresh	5.0	-	53.3	41.6		
	Spent	5.0	-	53.5	41.5		
$Ni_3B_2O_6$	Fresh	-	4.3	53.6	42.1		
	Spent	-	10.0	50.0	40.0		

Table S4 Summary of B 1s and O 1s XPS spectra data for the CoB_4O_7 and $Ni_3B_2O_6$ catalysts

Sample	Boron species (%)	Oxygen species (%)

		M-B-O	B-O	M-0	ОН	B-O
CoB ₄ O ₇	Fresh	70.3	29.7	29.2	50.9	19.9
	Spent	73.1	26.9	28.2	58.7	13.1
$Ni_3B_2O_6$	Fresh	60.1	39.9	15.1	41.8	43.1
	Spent	70.7	29.3	32.9	46.2	20.9

References

- 1. J. T. Grant, C. A. Carrero, F. Goeltl, J. Venegas, P. Mueller, S. P. Burt, S. E. Specht, W. P. McDermott, A. Chieregato and I. Hermans, *Science*, 2016, **354**, 1570-1573.
- 2. J. S. Tian, J. Q. Tan, M. L. Xu, Z. X. Zhang, S. L. Wan, S. Wang, J. D. Lin and Y. Wang, Sci Adv, 2019, 5.
- 3. J. T. Grant, W. P. McDermott, J. M. Venegas, S. P. Burt, J. Micka, S. P. Phivilay, C. A. Carrero and I. Hermans, *Chemcatchem*, 2017, **9**, 3623-3626.
- 4. W.-D. Lu, D. Wang, Z. Zhao, W. Song, W.-C. Li and A.-H. Lu, ACS Catalysis, 2019, **9**, 8263-8270.
- 5. W.-D. Lu, X.-Q. Gao, Q.-G. Wang, W.-C. Li, Z.-C. Zhao, D.-Q. Wang and A.-H. Lu, *Chinese Journal of Catalysis*, 2020, **41**, 1837-1845.
- 6. J. Chen, P. Rohani, S. G. Karakalos, M. J. Lance, T. J. Toops, M. T. Swihart and E. A. Kyriakidou, *Chem Commun*, 2020, **56**, 9882-9885.