Supporting Information

The Degradation of Phenol via in-situ H_2O_2 Production Over Supported Pd-based Catalysts.

Alba Santos^a, Richard J. Lewis^a, David J. Morgan^{a,b}, Thomas E. Davies^a, Euan Hampton^c, Paul Gaskin^c and Graham J. Hutchings^a

^aMax Planck centre for Fundamental Heterogeneous Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom.

^bHarwellXPS, Research Complex at Harwell (RCaH), Didcot, OX11 OFA, United Kingdom.

^cDŵr Cymru Welsh Water, Pentwyn Road, Nelson, Treharris, CF46 6LY, United Kingdom.

⁺These authors contributed equally to this work.

*Hutch@Cardiff.ac.uk, LewisR27@Cardiff.ac.uk

Table S.1. Synthesis details of the precursors used in the preparation of mono- and bi-metallic 1% PdX/TiO₂ catalysts.

Catalyst	Pd precursor	Volume of Pd precursor / mL (concentration 6.96 mgmL ⁻¹)	Metal X precursor	Volume of metal X precursor / mL (concentration mgmL ⁻¹)
1%Pd/TiO ₂	PdCl ₂	1.437	-	-
0.5%Pd-0.5%Au/TiO ₂	PdCl ₂	0.718	HAuCl ₄ .3H ₂ O	0.408 (12.25)
0.5%Pd-0.5%Cu/TiO ₂	PdCl ₂	0.718	CuCl ₂	0.981 (5.10)
0.5%Pd-0.5%Co/TiO ₂	PdCl ₂	0.718	CoCl ₂ .6H ₂ O	2.119 (2.36)
0.5%Pd-0.5%Fe/TiO ₂	PdCl ₂	0.718	FeCl ₃ .6H ₂ O	1.046 (4.78)

Note : All catalysts were exposed to a reductive heat treatment (5%H₂/Ar, 400 °C, 4 h, 10 °C min⁻¹) prior to use.

Table S.2. Determination of actual catalyst loading, as determined by MP-AES analysis of aqua-regia digested catalysts.

Theoretical Catalyst Loading / wt.%	Actual Catalyst Loading / wt.%
1%Pd/TiO ₂	0.91%Pd/TiO ₂
0.75%Pd-0.25%Fe/TiO ₂	0.73%Pd-0.27%Fe/TiO ₂
0.5%Pd-0.5%Fe/TiO ₂	0.42%Pd-0.58%Fe/TiO ₂
0.25%Pd-0.75%Fe/TiO ₂	0.24%Pd-0.76%Fe/TiO ₂
1%Fe/TiO ₂	0.81%Fe/TiO ₂

Table S.3. Surface area of as-prepared TiO₂ supported catalysts.

Catalyst	Surface area */
	m²g-1
TiO ₂ **	61
1%Pd/TiO ₂	56
0.75%Pd-0.25%Fe/TiO ₂	53
0.5%Pd-0.5%Fe/TiO ₂	54
0.25%Pd-0.75%Fe/TiO ₂	56
1%Fe/TiO ₂	59

* Surface area determined from nitrogen adsorption measurements using the BET equation. **Support material used as received, with no modification prior to metal immobilisation.

Figure S.1. Pd(3d)/Au(4d) spectra region for as-prepared 1%PdX/TiO₂ catalysts (X = Au, Cu, Co and Fe). *Key:* Metallic Pd (*Blue*), Pd(II) Oxide (*Purple*), Pd(II) Chloride (*Yellow*) and Metallic Au (*Green*). **Note**: all catalysts exposed to a reductive heat treatment prior to use $(5\%H_2/Ar, 500 \degree C, 4 h, 10 \degree C min^{-1})$.

Table S.4. The choice of oxidant on the catalytic activity of 0.5%Pd-0.5%Fe/TiO₂ towards the degradation of phenol.

Oxidant	Phenol	
	Conversion / %	
$H_2 + O_2$	39.0	
$H_2(N_2)$	6.0	
$O_2(N_2)$	4.0	
$H_2O_2(N_2)^*$	0.2	

Phenol degradation reaction conditions: Catalyst (0.01 g), phenol (1000 ppm, 8.5 g), 5% H_2 / CO_2 (420 psi), 25% O_2 / CO_2 (160 psi), 2 h, 30 °C, 2 h.*Concentration of H_2O_2 (4.5 mmol) used is comparable to that produced if all H_2 in a standard phenol oxidation reaction is converted to H_2O_2 . In the case of the O_2 and H_2 only experiments N_2 in parentheses is indicative of gaseous diluent used to maintain total pressure at 580 psi. Similarly, N_2 (580 psi) was used in the experiment, which used commercial H_2O_2 as the oxidant.

Figure S.2. ¹H NMR spectra of demonstrating the lack of phenol hydrogenation during the oxidative degradation of phenol via in-situ H_2O_2 production. **(A)** post-hydrogenation reaction, **(B)** cyclohexanol and **(C)** cyclohexanone. **Phenol hydrogenation reaction conditions:** Catalyst (0.01 g), phenol (1000 ppm, 8.5 g), 5% H_2 / CO_2 (420 psi), N_2 (160 psi), 2 h, 30 °C, 2 h.

Supplementary Note.

With numerous studies reporting the ability of Pd nanoparticles to catalyse the reduction of phenol to cyclohexanol and cyclohexanone (collectively KA oil)¹ we were motivated to rule out this route to phenol conversion. The ¹HNMR spectra of a post-hydrogenation phenol reaction (Figure S.2.A), where the reaction was carried out under identical conditions to those used for the degradation of phenol via in-situ H_2O_2 production but in the absence of O_2 indicates that under these reaction conditions the formation of KA oil is not a route to phenol conversion, with no chemical shifts attributed to either phenol hydrogenation product observed. The ¹HNMR spectra of the individual products of phenol hydrogenation (cyclohexanol and cyclohexanone) are reported in Figure S.2.B and Figure S.2.C respectively for reference.

Table S.5. Catalytic activity towards the direct synthesis and subsequent degradation of H_2O_2 , as a function of Pd: Fe ratio, under conditions utilised for the in-situ oxidative degradation of phenol.

Catalyst	H ₂ O ₂ concentration / wt.%	Degradation / %
1%Pd/TiO ₂	0.065	84.4
0.75%Pd-0.25%Fe/TiO ₂	0.050	43.2
0.5%Pd-0.5%Fe/TiO ₂	0.046	32.8
0.25%Pd-0.75%Fe/TiO ₂	0.069	12.2
1%Fe/TiO ₂	0.000	0.01

 $\begin{array}{c} \textbf{H_2O_2 \ direct \ synthesis \ reaction \ conditions: \ H_2O \ (8.5 \ g) \ catalyst \ (0.01 \ g), \ 5\%H_2/CO_2 \ (420 \ psi), \ 25\% \ O_2/CO_2 \ (160 \ psi), \ 30 \ ^\circ\text{C}, \ 0.5 \ h, \ 1200 \ rpm. \\ \textbf{H_2O_2 \ degradation \ reaction \ conditions: \ H_2O \ (7.82 \ g) \ H_2O_2 \ (50 \ wt.\%, \ 0.68 \ g), \ catalyst \ (0.01 \ g), \ 5\%H_2/CO_2 \ (420 \ psi), \ 25\% \ O_2/CO_2 \ (160 \ psi), \ 30 \ ^\circ\text{C}, \ 0.5 \ h, \ 1200 \ rpm. \\ \textbf{h}, \ 1200 \ rpm. \end{array}$

Figure S.4. XPS spectra of **(A)** Pd(3d) and **(B)** Fe (2p) regions for the as-prepared 1%PdFe/TiO₂ catalysts. *Key:* Metallic Pd (*Blue*) and Pd(II) Oxide (*Purple*). **Note**: all catalysts exposed to a reductive heat treatment prior to use (5%H₂/Ar, 500 °C, 4 h, 10 °C min⁻¹).

Figure S.5. X-ray diffractograms of 1%PdFe/TiO₂ catalysts, prepared via an excess chloride methodology. **(A)** 1%Pd/TiO₂, **(B)** 0.75%Pd-0.25%Fe/TiO₂, **(C)** 0.5%Pd-0.5%Fe/TiO₂, **(D)** 0.25%Pd-0.75%Fe/TiO₂, **(E)** 1%Fe/TiO₂ and **(F)** TiO₂. **Note**: all catalysts exposed to a reductive heat treatment prior to use $(5\%H_2/Ar, 500 \degree C, 4 h, 10 \degree C min^{-1})$.

Figure S. 6 Transmission electron microscopy of the $1\%PdFe/TiO_2$ catalysts prepared by an excess chloride methodology. (A) $1\%Pd/TiO_2$, (B) $0.75\%Pd-0.25\%Fe/TiO_2$, (C) $0.5\%Pd-0.5\%Fe/TiO_2$, (D) $0.25\%Pd-0.75\%Fe/TiO_2$ and (E) $1\%Fe/TiO_2$ Note: all catalysts exposed to a reductive heat treatment prior to use $(5\%H_2/Ar, 500 \ ^\circ\text{C}, 4 \ h, 10 \ ^\circ\text{C} \ min^{-1})$.

Table S.6. MP-AES analysis of post reaction solutions of the degradation of phenol utilising 1% PdFe/TiO₂ as a function of Pd: Fe ratio.

derivatives acids / % (%) (%) / %	
1%Pd/TiO ₂ 11.0 11.0 89.0 - 0.0 (D)
0.75%Pd-0.25%Fe/TiO ₂ 32.0 30.0 70.0 1.35 (46) 0.17	(2)
0.5%Pd-0.5%Fe/TiO ₂ 39.0 31.0 69.0 2.44 (42) 0.08	(1)
0.25%Pd-0.75%Fe/TiO ₂ 46.0 29.0 71.0 3.22 (36) 0.05 ((1)
1%Fe/TiO ₂ 3.0 0.0 100.0 0.0 (0) -	

Phenol degradation reaction conditions: Catalyst (0.01 g), phenol (1000 ppm, 8.5 g), 5% H_2 / CO_2 (420 psi), 25% O_2 / CO_2 (160 psi), 2 h, 30 °C, 2 h. **Note:** Values in parentheses indicate the extent of Fe and Pd leaching as a percentage of metal loading.

Table S.7. Pd and Fe leaching of 1%PdFe/TiO₂ catalysts exposed to phenol oxidation reaction conditions in the absence of phenol or under conditions where phenol oxidation through H₂O₂ generation is not possible.

Catalyst	Fe leaching / ppm (%)	Pd leaching / ppm (%)
1%Pd/TiO ₂	-	0.0 (0)
0.75%Pd-0.25%Fe/TiO ₂	0.0 (0)	0.0 (0)
0.5%Pd-0.5%Fe/TiO ₂	0.0 (0)	0.0 (0)
0.25%Pd-0.75%Fe/TiO ₂	0.0 (0)	0.0 (0)
1%Fe/TiO ₂	0.0 (0)	-
0.5%Pd-0.5%Fe/TiO2 (phenol)*	0.0 (0)	0.0 (0)

Phenol degradation reaction conditions: Catalyst (0.01 g), H₂O (1000 ppm, 8.5 g), 5% H₂ / CO₂ (420 psi), 25% O₂ / CO₂ (160 psi), 2 h, 30 °C, 2 h.*Conditions as outlined above, in the presence of phenol (1000 ppm) under N₂ atmosphere (580 psi). **Note:** Values in parentheses indicate the extent of Fe and Pd leaching as a percentage of metal loading.

References.

1. H. Zhou, B. Han, T. Liu, X. Zhong, G. Zhuang and J. Wang, *Green Chem.*, 2017, **19**, 3585-3594.