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General experimental details

All manipulations requiring inert conditions were performed under an argon atmosphere using
standard Schlenk techniques or in a glove box. All reagents and solvents were obtained from Sigma-
Aldrich, Fischer Scientific, Honeywell or Acros Organics and were used without further purification
unless described otherwise. Dry THF, toluene and hexane were collected from a solvent purification
system (Innovative Technologies), dried over activated 4 A molecular sieves and stored under argon.
THF-ds and toluene-ds NMR solvents for NMR were degassed by three freeze-pump-thaw cycles and
stored over activated 4 A molecular sieves under argon. Rac-lactide (rac-LA), L-lactide (L-LA) and D-
lactide (D-LA) were purified by double recrystallisation from toluene and sublimation. Benzyl alcohol
(BnOH), e-caprolactone (g-CL), 6-valerolactone (8-VL) and hexamethyldisilazane (HMDSH) were dried
over CaH, and distilled under reduced pressure prior to use. H, *C and 2D NMR (COSY, HSQC and
DOSY) spectra were recorded on a Bruker AVA500, PRO500, AVA400 and AVA600 spectrometers at
298 K at 400 MHz, 500 MHz and 600 MHz and referenced to the residual solvent peaks (*H: & 3.58 for
THF-dg and 6 2.08 for toluene-ds, 3C: 6 67.21 for THF-dsand & 137.48 for toluene-ds). The reported
DOSY masses (to the nearest whole number) and aggregation states were determined by comparison
to a calibration plot made with a range of standards (HMDSH, Zn(HMDS),, B-diketiminate ligand (BDIH)
and (BDI)Zn(HMDS)) with molar masses varying from 161.4 to 643.4 g mol™ in THF-dsand toluene-ds.!
SEC analyses of the filtered polymer samples were carried out in GPC grade THF at a flow rate of 1 mL
mint at 35 °C on a 1260 Infinity Il GPC/SEC single detection system with mixed bed C PLgel columns
(300 x 7.5 mm). APPI-MS analysis was performed using a Bruker Daltonics 12T SolariX Fourier
Transform lon Cyclotron Resonance Mass Spectrometer using atmospheric pressure photoionisation
(APPI). MALDI-ToF MS analyses were performed using a Bruker Daltonics UltrafleXtreme™ MALDI-
ToF/ToF MS instrument. The sample to be analysed, dithranol or 2,5-dihydroxybenzoic acid matrix and
Kl (cationising agent) were dissolved in THF at 10 mg mL? and the solutions were mixed in a 2:2:1
volume ratio, respectively. A droplet (2 pL) of the resultant mixture was spotted on to the sample

plate and submitted for MALDI-ToF MS analysis.

General computational details

All density-functional theory (DFT) calculations were performed using the Gaussian16 suite of codes
(revision A.03).2Geometries were fully optimised without any symmetry or geometry constraints. The
nature of all the stationary points as minima was verified by calculations of the vibrational frequency
spectrum at 298 K and characterised by no imaginary mode. Only the intermediates of lowest free
enthalpy found are reported here. Free enthalpies were calculated within the harmonic
approximation for vibrational frequencies. DFT optimisation was carried out using the wB97XD long-

range corrected (LC) hybrid functional developed by Chai and Head-Gordon that includes an empirical



dispersion correction.>* The 6-311++g(d,p) basis set was used for N, O, Zn, Mg, Ca atoms and the 6-
31g(d) basis set was used for C and H atoms. Solvent effects in THF were considered using conductor-
like polarisable continuum model (CPCM).>®In order to facilitate DFT optimisations, calculations were
carried out on a model version of the Trost ProPhenol ligand used experimentally, using no methyl
group in the para position of the phenol ring. Based on our previous work, we assumed that the R,R
configuration of the ligand at the nitrogen atoms was retained upon metal(s) coordination.” Full
coordinates for all the stationary points, together with computed energies and vibrational frequency
data, are available via the corresponding Gaussian16 output files and calculation spreadsheet, stored

in the open-access digital repository, DOI:10.6084/m9.figshare.15785475.

Synthesis and characterisation of Ca(HMDS)>(THF),

Ca(HMDS),(THF), was synthesised following a literature procedure.® Cal, (2.95 g, 10.03 mmol) was
added to a solution of KHMDS (4.00 g, 20.05 mmol) in dry THF (10 mL) in the glove box. The resulting
mixture was stirred vigorously for 48 h under reflux under an argon atmosphere. The solution was
then filtered through a plug of celite/glass wool, followed by removal of THF in vacuo and second
filtration through celite/glass wool in pentane (10 mL). Pentane was subsequently removed in vacuo
resulting in a pale orange powder (1.04 g, 21%). *H NMR (500 MHz, THF-ds) 6 3.62 (m, 8 H), 1.77 (m, 8
H), 0.00 (s, 36 H) ppm. 3C NMR (126 MHz, THF-ds) & 68.03, 26.19, 5.61 ppm.

Synthesis and characterisation of complex 1

(5,5)-(+)-2,6-bis[2-(hydroxydiphenylmethyl)-1-pyrrolidinyl-methyl]-4-methylphenol (500 mg, 0.79
mmol) was weighed into a Schlenk flask and dissolved in dry THF (10 mL) in the glove box. Mg(HMDS),
(270.3 mg, 0.79 mmol) was added to the ligand solution. The resulting mixture was stirred for 15 min
at ambient temperature under an argon atmosphere in the glove box. ZnEt; (97.0 mg, 0.79 mmol)
dissolved in dry THF (2.5 mL) was subsequently added and the reaction mixture was stirred for 16 h at
ambient temperature under an argon atmosphere in the glove box. THF was subsequently removed
in vacuo, resulting in a pale yellow powder (0.62 g, 78%). '"H NMR (601 MHz, THF-ds) 6 8.04 (d, 2 H),
7.87 (d, 2 H), 7.77 (d, 2 H), 7.62 (d, 2 H), 7.16 (q, 4 H), 7.07 (t, 4 H), 6.96 (dt, 2 H), 6.90 (dt, 2 H), 6.64
(d, 1 H), 6.59 (d, 1 H), 4.11 (d, 1 H), 3.82 (m, 2 H), 3.70 (m, 1 H), 3.62 (m, 4 H), 2.67 (dt, 1 H), 2.53 (d, 1
H), 2.33-2.43 (m, 4 H), 2.17-2.25 (m, 2 H), 2.05 (s, 3 H), 1.77 (m, 4 H), 1.19-1.54 (m, 6 H), 0.89 (t, 3 H),
0.04 (s, 19 H), -0.11-0.00 (m, 2 H). 3C NMR (126 MHz, THF, for assignment, see Fig. S4) § 158.73 (C13),
156.21 (C14), 155.88 (C14), 155.84 (C14), 155.81 (C14), 131.95 (C2), 131.89 (C2), 127.83 (C9), 127.60
(C9),127.44 (C9), 127.34 (C9), 127.30 (C8), 126.73 (C8), 126.67 (C8), 126.63 (C8), 125.34 (C10), 125.12
(C10), 124.84 (C10), 124.80 (C10), 79.28 (C15), 76.80 (C15), 75.06 (C4), 71.07 (C4), 60.11 (C3), 58.61


https://figshare.com/s/96c44b9915bbf95121a3

(€3), 55.11 (C7), 29.77 (C5 + C6), 29.54 (C5 + C6), 20.12 (C7), 20.02 (C1), 13.65 (C12), 2.49 (HMDSH), -
0.45 (C11).

Elemental analysis: Calculated for [LMgZnEt(THF)(HMDSH)]: C, 66.86; H, 7.65; N, 4.25%. Found: C,
66.15; H, 7.31; N, 4.11%.

m/z (APPI-MS): 753.28 [LMgZnEt + H]* (calc: 753.28).

Synthesis and characterisation of complex 2
(5,5)-(+)-2,6-bis[2-(hydroxydiphenylmethyl)-1-pyrrolidinyl-methyl]-4-methylphenol (500 mg, 0.79
mmol) was weighed into a Schlenk flask and dissolved in dry THF (10 mL) in the glove box.
Ca(HMDS),(THF); (395.9 mg, 0.79 mmol) was added to the ligand solution. The resulting mixture was
stirred for 15 min at ambient temperature under an argon atmosphere in the glove box. ZnEt; (97.0
mg, 0.79 mmol) dissolved in dry THF (2.5 mL) was subsequently added and the reaction mixture was
stirred for 16 h at ambient temperature under an argon atmosphere in the glove box. THF was
subsequently removed in vacuo, resulting in a pale yellow powder (0.60 g, 75%). *H NMR (500 MHz,
THF) 6 8.06 (d, 2 H), 7.76 (dd, 4 H), 7.56 (d, 2 H), 7.02-7.13 (m, 8 H), 6.78-6.90 (m, 4 H), 6.61 (dd, 2 H),
4.12 (d,1H),4.01(d, 1 H), 3.75-3.82 (m, 2 H), 3.60-3.63 (m, 4 H), 2.68 (d, 2 H), 2.60-2.63 (m, 1 H), 2.34-
2.38 (m, 1 H), 2.18-2.21 (m, 2 H), 2.04 (s, 3 H), 1.84-1.91 (m, 1 H), 1.76-1.79 (m, 4 H), 1.54-1.60 (m, 2
H), 1.43-1.49 (m, 4 H), 1.17-1.21 (m, 2 H), 1.01 (t, 3 H), 0.04 (s, 19 H), -0.17--0.08 (m, 2 H). *C NMR
(126 MHz, THF, for assignment, see Fig. S8) 6 161.06 (C13), 157.72 (C14), 157.06 (C14), 156.32 (C14),
156.21 (C14), 133.16 (C2), 131.52 (C2), 130.21 (C9), 127.65 (C9), 127.57 (C9), 127.20 (C8), 127.09 (C8),
127.01 (C8), 126.86 (C8), 126.47 (C9), 125.17 (C10), 124.77 (C9 + C10), 124.66 (C10), 124.37 (C10),
79.85 (C15), 79.52 (C15), 77.25 (C4), 70.42 (C4), 59.38 (C3), 58.93 (C3), 55.05 (C7), 29.90 (C5 + C6),
28.80 (C5 + C6), 20.25 (C7), 20.17 (C1), 13.96 (C12), 2.49 (HMDSH), -0.43 (C11).

Elemental analysis: Calculated for [LCaZnEt(THF)(HMDSH)]: C, 65.81; H, 7.53; N, 4.19%. Found: C,
66.10; H, 7.03; N, 4.15%

m/z (APPI-MS): 795.23 [LCaZnOH + K]* (calc: 795.32).

Synthesis and characterisation of complex 6

(5,5)-(+)-2,6-bis[2-(hydroxydiphenylmethyl)-1-pyrrolidinyl-methyl]-4-methylphenol (500 mg, 0.79
mmol) was weighed into a Schlenk flask and dissolved in dry THF (10 mL) in the glove box. Mg(HMDS),
(540.6 mg, 1.58 mmol) was added to the ligand solution and additional 2 mL of THF were added. The
resulting mixture was stirred for 1 h at ambient temperature under an argon atmosphere in the glove
box. THF was subsequently removed in vacuo, resulting in a pale orange powder (0.65 g, 55%). *H NMR
(601 MHz, THF) 6 7.95 (d, 4 H), 7.70 (d, 4 H), 7.13 (t, 4 H), 7.07 (t, 4 H), 6.95 (t, 2 H), 6.90 (t, 2 H), 6.68
(s, 2 H),4.01(d, 2 H), 3.86-3.89 (m, 2 H), 3.61-3.63 (m, 10 H), 2.72 (d, 2 H), 2.63 (t, 2 H), 2.32 (g, 2 H),



2.07 (s, 3 H), 1.76-1.78 (m, 10 H), 1.55-1.60 (m, 2 H), 1.43-1.49 (m, 6 H), 0.29 (s, 18 H). *C NMR (126
MHz, THF, for assignment, see Fig. $12)  156.04 (C13), 155.43 (C14), 155.37 (C14), 131.97 (C2), 127.70
(C9), 127.40 (C9), 127.12 (C8), 126.72 (C8), 125.52 (C10), 124.90 (C10), 77.81 (C15), 73.86 (C4), 60.85
(C3), 55.04 (C7), 29.75 (C5 + C6), 20.27 (C5 + C6), 19.94 (C1), 6.74 (C11), 2.48 (HMDSH).

Elemental analysis: Calculated for [LMgHMDS(THF)(HMDSH)]: C, 65.72; H, 8.23; N, 5.20%. Found: C,
66.10; H, 7.82; N, 4.80%

m/z (APPI-MS): 1385.60 [(LMg2OH)(LMg2)]* (calc: 1384.60).

Synthesis and characterisation of complex 7
(5,5)-(+)-2,6-bis[2-(hydroxydiphenylmethyl)-1-pyrrolidinyl-methyl]-4-methylphenol (300 mg, 0.47
mmol) was weighed into a Schlenk flask and dissolved in dry THF (4 mL) in the glove box.
Ca(HMDS),(THF); (472 mg, 0.94 mmol) was added to the ligand solution and additional 2 mL of THF
were added. The resulting mixture was stirred for 16 h at ambient temperature under an argon
atmosphere in the glove box. THF was subsequently removed in vacuo, resulting in a pale orange
powder (0.44 g, 75%). Notably, the assignment of NMR spectra of complex 7 was not possible due to
the rapid Schlenk equilibria resulting in very complicated and broad spectra in THF-ds and toluene-ds
and by variable temperature *H NMR (THF-ds) between 5-55 °C.°

Elemental analysis: Calculated for [LCa;HMDS(THF)4(HMDSH),]: C, 62.17; H, 8.88; N, 4.71%. Found: C,
62.25; H,7.79; N, 4.42%

m/z (APPI-MS): 1391.55 [(LHCa)(LCa>)]* (calc: 1391.55).

Synthesis and characterisation of complex 11

Complex 6 (250 mg, 0.18 mmol) and BnOH (18.70 uL, 0.18 mmol) were added to a Schlenk flask and
dissolved in dry THF (4 mL). The resulting reaction mixture was stirred at ambient temperature for 1
h under argon atmosphere. Upon completion, THF was removed in vacuo, resulting in a pale orange
powder (185 mg, 81%). 'H NMR (500 MHz, THF) & 8.53 (d, 2 H), 8.16 (d, 4 H), 7.85 (d, 4 H), 7.43 (t, 2
H), 7.22 (t, 1 H), 7.15 (t, 4 H), 7.08 (t, 4 H), 6.95 (t, 2 H), 6.90 (t, 2 H), 6.60 (s, 2 H), 5.63 (d, 1 H), 5.23 (d,
1 H), 3.77-3.82 (m, 4 H), 3.60-3.63 (m, 7 H), 2.54 (d, 2 H), 2.42 (t, 2 H), 2.17-2.23 (m, 2 H), 2.04 (s, 3 H),
1.77-1.79 (m, 7 H), 1.42-1.44 (m, 6 H), 1.21-1.29 (m, 2 H). 3C NMR (126 MHz, THF, for assighment, see
Fig. S15) & 157.32 (C17), 156.79 (C18), 156.35 (C18), 149.42 (C16), 131.16 (C2), 129.34 (C12), 128.36
(C13), 127.61 (C9), 127.34 (C9), 126.75 (C8), 126.58 (C8), 126.30 (C14), 124.70 (C10), 124.58 (C10),
77.42 (C15), 74.65 (C4), 67.36 (C11), 60.87 (C3), 55.77 (C7), 29.83 (C5 + C6), 20.29 (C5 + C6), 20.10
(c1).

Elemental analysis: Calculated for [LMg,OBn(THF),(HMDSH)]: C, 70.06; H, 7.81; N, 3.83%. Found: C,
70.47; H, 7.50; N, 3.53%
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m/z (APPI-MS): 1385.60 [(LMg.0H)(LMg>)]* (calc: 1385.60).

Synthesis and characterisation of complex 12

Complex 7 (250 mg, 0.29 mmol) and BnOH (29.70 uL, 0.29 mmol) were added to a Schlenk flask and
dissolved in dry THF (4 mL). The resulting reaction mixture was stirred at ambient temperature for 1
h under argon atmosphere. Upon completion, THF was removed in vacuo, resulting in a pale orange
powder (160 mg, 48%). *H NMR (500 MHz, THF) & 8.28 (d, 4 H), 7.85 (d, 4 H), 7.40 (d, 3 H), 7.17 (t, 2
H), 7.08 (t, 4 H), 7.02 (t, 4 H), 6.87 (t, 2 H), 6.82 (t, 2 H), 6.61 (s, 2 H), 3.94 (d, 2 H), 3.72-3.77 (m, 2 H),
3.60-3.63 (m, 7 H), 2.49 (t, 2 H), 2.35 (d, 2 H), 2.14 (g, 2 H), 2.04 (s, 3 H), 1.76-1.79 (m, 6 H), 1.55-1.59
(m, 2 H), 1.46-1.50 (m, 2 H), 1.21-1.27 (m, 2 H). 3C NMR (126 MHz, THF, for assignment, see Fig. $17)
6 161.74 (C17), 158.71 (C18), 132.31 (C2), 128.33 (C13), 127.43 (C9), 127.09 (C9), 127.02 (C8), 126.89
(C8), 126.85 (C14), 124.40 (C10), 124.14 (C10), 79.79 (C15), 76.20 (C4), 60.99 (C3), 56.15 (C7), 29.47
(C5 +C6), 21.23 (C5 + C6), 20.37 (C1).

Elemental analysis: Calculated for [LCa,OBn(THF),(HMDSH)]: C, 68.10; H, 7.59; N, 3.72%. Found: C,
67.70; H, 7.08; N, 3.59%

m/z (APPI-MS): 1447.50 [(LCa,OH)(LCa,)]* (calc: 1447.50).

General experimental procedure for the ring-opening polymerisation of LA in toluene

In the glove box, in two separate air-tight vials with magnetic stirrer bars, rac-LA, L-LA or b-LA (100 eq.,
200 mg, 1.39 mmol) was dissolved in dry toluene (1 mL) and complex 1 or 2 (13.9 umol) were dissolved
in dry toluene (0.39 mL). To aid solubility, both solutions were stirred for 3 minutes at 60 °C using
DrySyn heating blocks before the catalyst solution was added to the LA solution. The polymerisation
was initiated by addition of BnOH (1.44 L, 13.9 umol). The reaction was subsequently stirred at the
appropriate temperature for the required time. Upon completion, the reaction was quenched in
excess hexane. The volatiles were removed under compressed air and an aliquot was dissolved in

CDCl; for NMR spectroscopic analysis.

General experimental procedure for the ring-opening polymerisation of LA in THF

In the glove box, in an air-tight vial with a magnetic stirrer bar, rac-LA (100 eq., 200 mg, 1.39 mmol)
and complex 1 (13.9 umol) were dissolved in dry THF (1.39 mL). The polymerisation was initiated by
addition of BnOH (1.44 pL, 13.9 umol). The reaction was subsequently stirred using DrySyn heating
blocks at the appropriate temperature for the required time. Upon completion, the reaction was
qguenched in excess hexane. The volatiles were removed under compressed air and an aliquot was

dissolved in CDCl; for NMR spectroscopic analysis.
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General experimental procedure for the ring-opening polymerisation of &-CL

In the glove box, in an air-tight vial with a magnetic stirrer bar, e-CL (100 eq., 154 pL, 1.39 mmol) and
complex 1 or 2 (13.9 umol) were dissolved in dry toluene (1.39 mL). The polymerisation was initiated
by addition of BnOH (1.44 uL, 13.9 umol). The reaction was subsequently stirred using DrySyn heating
blocks at the appropriate temperature for the required time. Upon completion, the reaction was
guenched in excess hexane. The volatiles were removed under compressed air and an aliquot was

dissolved in CDCl; for NMR spectroscopic analysis.

General experimental procedure for the ring-opening polymerisation of 6-VL

In the glove box, in an air-tight vial with a magnetic stirrer bar, 6-VL (100 eq., 129 pL, 1.39 mmol) and
complex 1 or 2 (13.9 umol) were dissolved in dry toluene (1.39 mL). The polymerisation was initiated
by addition of BnOH (1.44 uL, 13.9 umol). The reaction was subsequently stirred using DrySyn heating
blocks at the appropriate temperature for the required time. Upon completion, the reaction was
guenched in excess hexane. The volatiles were removed under compressed air and an aliquot was

dissolved in CDCI3 for NMR spectroscopic analysis.
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Figure S1. Overlay of *H NMR spectra of [LHM]x (M = Mg or Ca, x = 1-3) in THF-ds (298 K).
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Figure S2. DOSY NMR spectrum of [LHMg]x (x = 2-3) in THF-ds (298 K).
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Figure S7. APPI-MS spectrum of complex 1.
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Figure S11. APPI-MS spectrum of complex 2. Decomposition of complex 2 to [LCaZnOH + K*] was
attributed to performing the APPI-MS measurement under non-strictly air-/moisture-sensitive

conditions.
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Figure S13. APPI-MS spectrum of complex 6. Decomposition of complex 6 to [(LMg,OH)(LMg>)]* was
attributed to performing the APPI-MS measurement under non-strictly air-/moisture-sensitive

conditions.
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Figure S14. APPI-MS spectrum of complex 7. Decomposition of complex 7 to [(LHCa)(LCaz)]* was
attributed to performing the APPI-MS measurement under non-strictly air-/moisture-sensitive
conditions.
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Figure S15. 'H and 3C NMR spectra of complex 11 in THF-ds (298 K). For assignment of the 3C NMR

spectrum, see above.
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Figure S16. APPI-MS spectrum of complex 11. Decomposition of complex 11 to [(LMg,OH)(LMg)]* was
attributed to performing the APPI-MS measurement under non-strictly air-/moisture-sensitive
conditions.
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Figure S18. APPI-MS spectrum of complex 12. Decomposition of complex 12 to [(LCa,OH)(LCa,)]* was
attributed to performing the APPI-MS measurement under non-strictly air-/moisture-sensitive

conditions.
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Figure $19. Overlaid 'H NMR spectra of complexes 1-3 in THF-ds.
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Table S1. Results for the ROP of rac-LA catalysed by heterometallic 1-2 and homometallic 6-7 in the
presence of 1 eq. BnOH in toluene at 60 °C.

Entry Catalyst Time Conv.? (%) M, obs” M calc pP P
(min) (g mol?) (g mol?)

1 1 0.67 26 1200 3700 1.13 -
2 1 2.5 36 3300 5200 1.12 0.6
3 1 4 46 3400 6600 1.14 0.56
4 1 5 53 4300 7600 1.13 0.5
5 1 7.5 69 4700 9900 1.22 -
6 1 10 84 5600 12100 1.13 0.54
7 2 0.08 32 1300 4600 1.19 -
8 2 0.33 39 2300 5600 1.16 0.64
9 2 0.67 46 2400 6600 1.27 0.5
10 2 1 70 3200 10100 1.26 0.51
11 2 1.25 82 4700 11800 1.26 0.46
12 6 1.25 25 2000 3600 1.16 -
13 6 2.5 34 2200 4900 1.19 -
14 6 5 46 2600 6600 1.12 0.45
15 6 10 66 4600 9500 1.21 0.43
16 6 20 87 8100 12500 1.15 0.49
17 7 0.08 39 2000 5600 2.01 0.54
18 7 0.33 49 1900 7000 1.78 -
19 7 0.67 56 3500 8000 1.42 0.49
20 7 1.25 64 4800 9200 1.51 -
21 7 2.5 75 4100 10800 1.27 -
22 7 5 93 5700 13400 1.58 0.47

100 eq. rac-LA, [LA] = 1 M in toluene. LA and pre-catalyst pre-stirred separately for 3 min in toluene at 60 °C before mixing
and initiation with BnOH. @ Conversion calculated using 'H NMR spectroscopy.? My ops and © determined by SEC using
polystyrene standards in THF. Values corrected by Mark-Houwink factor (0.58).10 ¢ My, caic of polymers calculated from the
monomer conversion M caic = Mo X ([M]/[I]) x conversion assuming 1 chain per catalyst. ¢ Determined by homodecoupled H
NMR spectroscopy.
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Figure S20. Comparison between experimental and calculated M, values and dispersity values at
increasing conversions of rac-LA in presence of complex 1 + 1 eq. BnOH in toluene at 60 °C.
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Figure S21. Example SEC trace of PLA generated in the presence of complex 1+ 1 eq. BnOH in toluene
at 60 °C (Entry 5, Table S1).
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Figure S22. Comparison between experimental and calculated M, values and dispersity values at
increasing conversions of rac-LA in presence of complex 2 + 1 eq. BnOH in toluene at 60 °C.
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Figure S23. Example SEC trace of PLA generated in the presence of complex 2 + 1 eq. BnOH in toluene
at 60 °C (Entry 10, Table S1).
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Figure S24. Plot of In([rac-LA]o/[rac-LA];) vs. time (min) for rac-LA ROP with 6 and 7 in the presence of
1 eq. BnOH (100 eq. rac-LA, [rac-LA] = 1 M, toluene, 60 °C).
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Figure S25. Example SEC trace of PLA generated in the presence of complex 6 + 1 eq. BnOH in toluene
at 60 °C (Entry 15, Table S1).
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Figure S26. Example SEC trace of PLA generated in the presence of complex 7 + 1 eq. BnOH in toluene
at 60 °C (Entry 19, Table S1).
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Table S2. Results for the ROP of rac-LA catalysed by 1-2 in the presence of 1 eq. BnOH in THF at 60 °C
and R.T.

Entry Cat. Temp. Time  Conv.?(%)  Mnobs’ M calc pP P
(min) (g mol?) (g mol?)
1 2 60 °C 0.08 42 2300 6100 1.34 0.47
2 2 60 °C 0.33 58 3200 8400 1.39 -
3 2 60 °C 0.67 64 4300 9200 1.5 0.48
4 2 60 °C 1.25 80 5800 11500 1.55 0.54
5 2 60 °C 2.5 92 6300 13300 1.81 0.49
6 2 R.T. 0.08 48 2100 6900 1.3 0.54
7 2 R.T. 0.67 53 3800 7600 1.45 -
8 2 R.T. 1.25 65 4100 9400 1.45 0.5
9 2 R.T. 2.5 80 5100 11500 1.49 0.49
10 2 R.T. 4 84 6200 12100 1.66 0.49
11¢ 2 R.T. 0.67 54 3300 7800 1.48 0.53
12 2 -36 °C 1.25 26 1800 3700 1.32 0.51
13f 2 R.T. 0.33 40 - - - 0.53
145 2 60 °C 0.33 44 - - - 0.52
15 1 60 °C 10 16 - - - -
16 1 60 °C 120 54 5300 7800 1.09 0.5

[LA] =1 M in THF. 2 Conversion calculated using 'H NMR spectroscopy.? Mn ons and D determined by SEC using polystyrene
standards in THF. Values corrected by Mark-Houwink factor (0.58).19 ¢ M), caic Of polymers calculated from the monomer
conversion My caic = Mo x ([M]/[1]) x conversion assuming 1 chain per catalyst. 9 Determined by homodecoupled *H NMR
spectroscopy. ¢ THF used was pre-chilled to -36 °C.f[LA] = 0.5 M in THF. 8 [LA] = 0.5 M in toluene.
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Figure S27. Plot of In([rac-LA]O/[rac-LA]:) vs. time (min) for rac-LA ROP with 2 in the presence of 1 eq.
BnOH (100 eq. rac-LA, [rac-LA] = 1 M, THF, 60 °C).
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Figure S28. Plot of In([rac-LA]o/[rac-LA]:) vs. time (min) for rac-LA ROP with 2 in the presence of 1 eq.
BnOH (100 eq. rac-LA, [rac-LA] =1 M, THF, R.T.).
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Figure S29. Comparison between experimental and calculated M, values and dispersity values at
increasing conversions of rac-LA in presence of complex 2 + 1 eq. BnOH in THF at 60 °C.
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Figure S30. Example SEC trace of PLA generated in the presence of complex 2 + 1 eq. BnOH in THF at
60 °C (Entry 3, Table S2).
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Figure S31. Comparison between experimental and calculated M, values and dispersity values at
increasing conversions of rac-LA in presence of complex 2 + 1 eq. BnOH in THF at R.T.
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Figure $32. Example SEC trace of PLA generated in the presence of complex 2 + 1 eq. BnOH in THF at
R.T. (Entry 8, Table S2).
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Figure S33. Plot of In([rac-LA]O/[rac-LA]:) vs. time (min) for rac-LA ROP with 3 in the presence of 1 eq.
BnOH (100 eq. rac-LA, [rac-LA] = 1 M, toluene, 60 °C).
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Figure $34. Overlaid H NMR spectra (in THF-ds, R.T.) of complex 1, product mixture generated upon
reaction of 1 with 1 eq. BnOH, [LZn,OBn] (10) and [LMg,OBn] (11).
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Figure S35. MALDI-ToF spectrum of product mixture generated upon reaction of 1 with 1 eq
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Figure S36. Overlaid *H NMR spectra (in THF-ds, R.T.) of complex 2, product mixture generated upon

reaction of 1 with 1 eq. BnOH, [LZn,OBn] (10) and [LCa,OBn] (12).
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Figure S37. MALDI-ToF spectrum of product mixture generated upon reaction of 2 with 1 eq. BnOH.
Decomposition was attributed to performing the MALDI-ToF measurement under non air-/moisture-
sensitive conditions.

39




[LZn,0BnN]

I S L

[LMg,0Bn]
AN NN
[LZn,0Bn]
+ [LMg,0Bn]
[LZn,0Bn]

«— [LZn,0Bn]
[LMgZnOBn]

4JUK AN W

+ [LMg,0Bn]
at 60 °C (7 h)

[LMg,0Bn]

Complex 1
+ BnOH

6.65 660 655 650575 570 565 560 555 550 545 540 535 530 525 520 515 510 505 50
ppm
Figure S38. Overlaid 'H NMR region (in THF-ds), corresponding to the meta-phenolic protons on the
ligand backbone and the benzylic PhCH,-O(complex) protons, of [LZn,OBn] (10), [LMg.OBn] (11), 1:1
mixture of 10 and 11 at R.T., 1:1 mixture of 10 and 11 after 7 h at 60 °C and product mixture generated

upon reaction of 1 with 1 eq. BnOH.
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Figure $39. Overlaid *H NMR region (in THF-ds), corresponding to the meta-phenolic protons on the
ligand backbone and the benzylic PhCH,-O(complex) protons, of [LZn,OBn] (10), [LCa.OBn] (12), 1:1
mixture of 10 and 12 at R.T., 1:1 mixture of 10 and 12 after 7 h at 60 °C and product mixture generated
upon reaction of 2 with 1 eq. BnOH.
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Table S3. ROP of L- and D-LA with 1 in the presence of 1 eq. BnOH in toluene at 60 °C.

Entry Monomer Time Conv.? M, obs” M caic pb P
(min) (%) (g mol?)  (gmol?)
1 L-LA 0.67 25 1500 3600 1.19 0.99
2 L-LA 2.5 30 2800 4300 1.18 0.48
3 L-LA 5 53 4100 7600 1.11 0.56
4 L-LA 7.5 76 5400 11000 1.09 0.47
5 L-LA 10 86 6400 12400 1.07 0.49
6 D-LA 0.67 21 1300 3000 1.21 0.99
7 D-LA 2.5 31 2300 4500 1.17 0.99
8 D-LA 5 41 5100 5900 1.16 0.99
9 D-LA 10 64 4900 9200 1.15 0.70
10 D-LA 12.5 72 5100 10400 1.09 0.76

100 eq. LA; [LA] = 1 M in toluene. LA and pre-catalyst pre-stirred separately for 3 min in toluene at 60 °C before mixing and
initiation with BnOH. 2 Conversion calculated using 'H NMR spectroscopy.? M obs and P determined by SEC using polystyrene
standards in THF. Values corrected by Mark-Houwink factor (0.58).10 ¢ M, caic Of polymers calculated from the monomer
conversion My caic = Mo x ([M]/[1]) x conversion assuming 1 chain per catalyst. 9 Determined by homodecoupled *H NMR
spectroscopy.

Table S4. ROP of L- and D-LA with 2 in the presence of 1 eq. BnOH in toluene at 60 °C.

Entry Monomer Time Conv.? M, obs” M calc pb P
(min) (%) (gmol?)  (gmol?)
1 L-LA 0.08 30 1800 4300 1.21 0.99
2 L-LA 0.33 35 3600 5000 1.18 0.99
3 L-LA 0.5 65 5000 9400 1.15 0.99
4 L-LA 0.58 79 7500 11400 1.43 -
5 L-LA 0.67 91 7200 13100 1.37 -
6 D-LA 0.08 28 1700 4000 1.23 0.99
7 D-LA 0.33 35 3100 5000 1.42 -
8 D-LA 0.67 60 7400 8600 1.3 0.99
9 D-LA 1.08 77 8700 11100 1.2 0.99
10 D-LA 1.25 81 8300 11700 1.21 0.99

100 eq. LA; [LA] =1 M in toluene. LA and pre-catalyst pre-stirred separately for 3 min in toluene at 60 °C before mixing and
initiation with BnOH. 2 Conversion calculated using 'H NMR spectroscopy.? M obs and D determined by SEC using polystyrene
standards in THF. Values corrected by Mark-Houwink factor (0.58).19 ¢ M), caic Of polymers calculated from the monomer
conversion My caic = Mo x ([M]/[1]) x conversion assuming 1 chain per catalyst. 9 Determined by homodecoupled *H NMR
spectroscopy.
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Figure S40. MALDI-ToF spectrum of PLA resulting from 26% conversion of rac-LA in the presence of
complex 1 + 1 eq. BnOH (toluene, 60 °C).
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Figure S41. MALDI-ToF spectrum of PLA resulting from 53% conversion of rac-LA in the presence of
complex 1 + 1 eq. BnOH (toluene, 60 °C).
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Figure S42. MALDI-ToF spectrum of PLA resulting from 91% conversion of rac-LA in the presence of
complex 1 + 1 eq. BnOH (toluene, 60 °C).
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Figure S43. MALDI-ToF spectrum of PLA resulting from 32% conversion of rac-LA in the presence of
complex 2 + 1 eq. BnOH (toluene, 60 °C).
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Figure S44. MALDI-ToF spectrum of PLA resulting from 70% conversion of rac-LA in the presence of
complex 2 + 1 eq. BnOH (toluene, 60 °C).
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Figure S45. MALDI-ToF spectrum of PLA resulting from 99% conversion of rac-LA in the presence of
complex 2 + 1 eq. BnOH (toluene, 60 °C).
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Figure S46. MALDI-ToF spectrum of PLA resulting from 48% conversion of rac-LA in the presence of
complex 2 + 1 eq. BnOH (THF, R.T.).

47



= . . O ERTT
¢ ° * o ¢ (o AN
° ® ® ° [ C \[ oS
o0 ° "
+k
o 0
® o r(o J'go X
] o o ° o o
o o ® ¢ ® \[ " +L/
+|Na
0
B P I_(O\TJ)),H
n
+|Na*

10004

AT AT Mol ol

h=—=

2400 3800 3800 4000 4200 4400 mz

Figure S47. MALDI-ToF spectrum of PLA resulting from 68% conversion of rac-LA in the presence of
complex 2 + 1 eq. BnOH (THF, R.T.).

Table S5. ROP of rac-LA with 1 and 2 in the presence of 1 eq. BnOH and 1-5 eq. of exogenous HMDSH
in toluene at 60 °C.

Entry Cat. Exogenous Time Conv.? (%) M, obs” M calc® pb
HMDSH (min) (g mol?) (g mol?)
1 1 1eq. 0.67 15 1000 2200 1.16
2 1 1eq. 2.5 33 2900 4800 1.13
3 1 1eq. 4 43 3600 6200 1.13
4 1 1eq. 6.25 51 5200 7400 1.12
5 1 1eq. 7.5 62 6500 8900 1.16
6 1 1eq. 10 79 7200 11400 1.12
7 1 3 eq. 10 76 7000 11000 1.15
8 1 5 eq. 10 70 7500 10100 1.16
9 2 1eq. 0.33 33 1700 4800 1.31
10 2 1eq. 0.5 57 4700 8200 1.3
11 2 1eq. 0.67 71 4700 10200 1.33
12 2 1eq. 1.25 76 5500 11000 1.31
13 2 1eq. 2 83 6400 12000 1.47
14 2 3 eq. 1.25 77 6300 11100 1.38
15 2 5 eq. 1.25 72 5100 10400 1.43

100 eq. LA; [LA] =1 M in toluene. LA and pre-catalyst pre-stirred separately for 3 min in toluene at 60 °C before mixing and
initiation with BnOH and addition of exogenous HMDSH. 2 Conversion calculated using 'H NMR spectroscopy.? My o0s and B
determined by SEC using polystyrene standards in THF. Values corrected by Mark-Houwink factor (0.58).19 ¢ My caic Of
polymers calculated from the monomer conversion My, caic = Mo x ([M]/[1]) x conversion assuming 1 chain per catalyst.
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Figure S48. Plot of In([rac-LA]o/[rac-LA]:) vs. time (min) for rac-LA ROP with 1 in the presence of 1 eq.
BnOH and 1 eq. exogenous HMDSH (100 eq. rac-LA, [rac-LA] = 1 M, toluene, 60 °C).
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Figure S49. Plot of In([rac-LA]o/[rac-LA):) vs. time (min) for rac-LA ROP with 2 in the presence of 1 eq.
BnOH and 1 eq. exogenous HMDSH (100 eq. rac-LA, [rac-LA] = 1 M, toluene, 60 °C).
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Figure S50. Comparison between experimental and calculated M, values and dispersity values at
increasing conversions of rac-LA in presence of complex 1 + 1 eq. BnOH and 1 eq. exogenous HMDSH
in toluene at 60 °C.
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Figure S51. Comparison between experimental and calculated M, values and dispersity values at
increasing conversions of rac-LA in presence of complex 2 + 1 eq. BnOH and 1 eq. exogenous HMDSH
in toluene at 60 °C.
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Table S6. ROP of rac-LA with multi-component LMg/Zn-benzoxide (8) + 10 (bis-Zn) and 11 (bis-Mg)
and LCa/Zn-benzoxide (9) + 10 and 12 (bis-Ca) mixtures in toluene at 60 °C.

Entry

1e
2¢
3e
4¢

13
14
15

Cat.

8/10/11
8/10/11
8/10/11
8/10/11
8/10/11
9/10/12
9/10/12
9/10/12
9/10/12
9/10/12
10
11
12
10/11
10/12

Time
(min)

0.67
1.25
2.5
5
10
0.33
1.25
5
10
12.5
2
10
5
2.5
5

Conv.? (%)

25
49
69
82
90
7
22
56
78
85
99
12
84
13
94

b
Mn,obs

(g mol?)

3300
8900
13400
15200
16600

2900
11100
12100
10500
19900

14300
1900
12000

c
Mn,calc

(g mol)

3600
7100
10000
11800
13000

3200
8100
11200
12300
14300

12100
1900
13400

Db

1.24

1.11

1.23
1.2
1.2

1.36
1.28
1.45
1.56
1.35

1.19
1.15
1.48

100 eq. LA; [LA] = 1 M in toluene. LA and catalyst(s) pre-stirred separately for 3 min in toluene at 60 °C before mixing. @
Conversion calculated using *H NMR spectroscopy.? My obs and  determined by SEC using polystyrene standards in THF.
Values corrected by Mark-Houwink factor (0.58).10 ¢ M, caic of polymers calculated from the monomer conversion M, caic = Mo
x ([M]/[11) x conversion assuming 1 chain per catalyst.d Determined by homodecoupled H NMR spectroscopy. ¢ Composition
of the catalyst mixture: 8 (74%) + 10 (13%) + 11 (13%). f Composition of the catalyst mixture: 9 (66%) + 10 (17%) + 12 (17%).
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Figure S52. Plot of In([rac-LA]o/[rac-LA]:) vs. time (min) for rac-LA ROP with multi-component LMg/Zn-
benzoxide (8) + 10 (bis-Zn) and 11 (bis-Mg) mixture (100 eq. rac-LA, [rac-LA] = 1 M, toluene, 60 °C).
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Figure S53. Plot of In([rac-LAlo/[rac-LA]:) vs. time (min) for rac-LA ROP with multi-component LCa/Zn-
benzoxide (9) + 10 (bis-Zn) and 12 (bis-Ca) mixture (100 eq. rac-LA, [rac-LA] = 1 M, toluene, 60 °C).
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Figure S54. Comparison between experimental and calculated M, values and dispersity values at
increasing conversions of rac-LA in presence of multi-component LMg/Zn-benzoxide (8) + 10 (bis-Zn)
and 11 (bis-Mg) mixture in toluene at 60 °C.
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Figure S55. Comparison between experimental and calculated M, values and dispersity values at
increasing conversions of rac-LA in presence of multi-component LCa/Zn-benzoxide (9) + 10 (bis-Zn)
and 12 (bis-Ca) mixture in toluene at 60 °C.
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Figure S56. DOSY NMR spectrum of the multi-component 8/10/11 mixture in toluene-ds (298 K).
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Figure S57. DOSY NMR spectrum of the multi-component 9/10/12 mixture in toluene-ds (298 K).
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Figure S58. DOSY NMR spectrum of the multi-component 8/10/11 mixture in THF-ds (298 K).
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Figure S59. DOSY NMR spectrum of the multi-component 9/10/12 mixture in THF-ds (298 K).
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Table S7. ROP of e-CL and 6-VL with complexes 1 and 2 and 1 eq. BnOH in toluene at R.T.

Entry Cat. Monomer Time Conv.? (%) M,0bs° M calc pb
(min) (g mol?) (g mol?)

1 1 e-CL 0.08 86 7500 9800 1.76
2°¢ 1 e-CL 10 71 19100 40500 1.87
3ef 1 e-CL 10 81 42500 46200 1.54

4 1 o-VL 0.08 99 24000f 9900 1.78

5 2 e-CL 0.08 99 10600 11300 1.66
6° 2 e-CL 0.5 81 35900 46200 1.47
7¢+ 2 e-CL 0.5 76 54200 42400 1.72

8 2 4-VL 0.08 99 20400 9900 1.12

100:1:1 monomer:catalyst:BnOH, [monomer] = 1 M in toluene.2 Conversion calculated using *H NMR spectroscopy.? M obs
and D determined by SEC using polystyrene standards in THF. Values corrected by Mark-Houwink factor (0.56).¢ My, calc Of
polymers calculated from the monomer conversion Mn caic = Mo X ([M]/[l]) x conversion assuming 1 chain per catalyst. € 500
eq. e-CL used. f Reactions were run neat. & M, ops values reported are uncorrected.

11 12 13 14 15 16 17 18
Retention time (min)

Figure S60. Example SEC trace of PCL generated in the presence of complex 1 + 1 eq. BnOH in toluene
at R.T. (Entry 1, Table S7).
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Figure S61. Example SEC trace of PVL generated in the presence of complex 1+ 1 eq. BnOH in toluene
at R.T. (Entry 4, Table S7).
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Figure S62. Example SEC trace of PCL generated in the presence of complex 2 + 1 eq. BnOH in toluene
at R.T. (Entry 5, Table S7).
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Figure S63. Example SEC trace of PVL generated in the presence of complex 2 + 1 eq. BnOH in toluene
at R.T. (Entry 8, Table S7).
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Figure S64. MALDI-ToF spectrum of PCL resulting from 86% conversion of €-CL in the presence of
complex 1 + 1 eq. BnOH (toluene, R.T.).
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Figure S65. MALDI-ToF spectrum of PCL resulting from 91% conversion of €-CL in the presence of
complex 2 + 1 eq. BnOH (toluene, R.T.).
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Figure S66. MALDI-ToF spectrum of PCL resulting from 96% conversion of &-VL in the presence of
complex 1+ 1 eq. BnOH (toluene, R.T.).
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Figure S67. MALDI-ToF spectrum of PCL resulting from 97% conversion of &-VL in the presence of
complex 2 + 1 eq. BnOH (toluene, R.T.).
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Computed molecular structures of complexes [LHMg]’ and [LHCa]’

Potential geometries of the heterometallic precursors [LHMg]’ and [LHCa]’ were optimised and the
molecular structures with the lowest free enthalpies computed are shown in Figures S68-69,

respectively.

Figure S68. Molecular structure of [LHMg), computed at the rwB97XD/6-311++g(d,p)/6-
31g(d)/cpcm=tetrahydrofuran/298K level of theory. DFT calculations suggest that the phenolic OH of
[LHMg]’ is labile, as previously demonstrated with salen-based complexes,’* and could be on the
pyrrolidine N or the phenolic O.
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Figure S69. Molecular structure of [LHCa])’, computed at the rwB97XD/6-311++g(d,p)/6-
31g(d)/cpcm=tetrahydrofuran/298K level of theory. DFT calculations suggest that the phenolic OH of
[LHCaY’ is labile, as previously demonstrated with salen-based complexes,!* and could be on the
pyrrolidine N or the phenolic O.
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Computed molecular structures of complex 1’

Potential molecular structures of complex 1’ ([LMgZnEt(THF)(HMDSH)]’) were optimised and their

relative free enthalpies were compared and referenced to a putative [LMgZnEt]’ complex.

Table S8. Free enthalpies computed for complex 1’ at the

31g(d)/cpcm=tetrahydrofuran/298K level of theory.

AG (kcal/mol)
0.0 —
Ph
O, O
%, /\ /
Ph Zn Mg
", 1 NA7 N et
NG QN
+THF
+HMDSH
Structure

[LMgZnEt)’ + THF + HMDSH
[LMgZnEt(HMDSH)(THF)])’
[LMgZnEt(THF)(HMDSH)]’

Ph { 5
4.7 — Me3S|

(0)
Me Sl’N\

. | O
"" /\"" /
Mg Ph
n,, N o \N ot

G (Hartree)
—5123.851964
-5123.888279
—5123.900363

rwB97XD/6-311++g(d,p)/6-

M .
e3SI\ /SIMe3
-12.3 NSy
Ph o, o, | 4. fFn
Ph 2 i Ph
iy, / \O/ \
N N\\

AG (kcal mol™)
+0.0 (reference)
4.7

-12.3

According to the calculations detailed in Table S8, the coordination of one THF molecule and one
HMDSH molecule to the magnesium atom is favoured. The molecular structure of 1’ with the lowest
free enthalpy computed is shown in Figure S70. In that structure, some hydrogen bonding between
the amine proton and one of the ligand’s benzylic oxygen atoms can be seen, which may be a source

of additional stabilisation.
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Figure S70. Molecular structure of complex 1’, computed at the rwB97XD/6-311++g(d,p)/6-
31g(d)/cpcm=tetrahydrofuran/298K level of theory.
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Computed molecular structures of complex 2’

Potential molecular structures of complex 2’ ([LCaZnEt(THF)(HMDSH)]’) were optimised and their

relative free enthalpies were compared and referenced to a putative [LCaZnEt])’ complex.

Table S9. Free enthalpies computed for complex 2’ at the rwB97XD/6-311++g(d,p)/6-
31g(d)/cpcm=tetrahydrofuran/298K level of theory.

AG (kcal/mol)
0.0 —
Ph Ph
o) O
II" /\ / Ph
Ph Zn Ca - :
i,/ \O/ _— 4.8 — Me3S|| { }
:N N.\ /N O
Ph Me3S| \H, Ph
Ph "Zn/\ ¢ a/ Ph Me3s'|,S|Me3
i, 1N\ e -11.6 — NSy
+THF Ph o, o, | 4. fFn
+HMDSH Ph 2l > ed Ph
iy, / \O/ \N W
Structure G (Hartree) AG (kcal mol™)

[LCazZnEt])’ + THF + HMDSH
[LCaZnEt(HMDSH)(THF)]’
[LCaZnEt(THF)(HMDSH)]’

-5601.433252
-5601.440815
-5601.451738

+0.0 (reference)
-4.8
-11.6

According to the calculations detailed in Table S9, the coordination of one THF molecule and one
HMDSH molecule to the calcium atom is favoured. The molecular structure of 2’ with the lowest free
enthalpy computed is shown in Figure S71. In that structure, some hydrogen bonding between the
amine proton and one of the ligand’s benzylic oxygen atoms can be seen, which may be a source of

additional stabilisation.

67



Figure S71. Molecular structure of complex 2’, computed at the rwB97XD/6-311++g(d,p)/6-
31g(d)/cpcm=tetrahydrofuran/298K level of theory.
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Computed molecular structures of complex 3’

Potential molecular structures of complex 3’ ([LZn;Et]’) + THF + HMDSH were optimised and the
relative free enthalpies of [LZn,Et(HMDSH)(THF)]’ and [LZn,Et(THF)(HMDSH)]’ were compared and
referenced to 3’ + THF + HMDSH. N.B. [LZn;Et(HMDSH)(THF)])’ and [LZn,Et(THF)(HMDSH)]’ were

computed to allow direct comparison to 1’ and 2’.

Table S10. Free enthalpies computed for complex 3’ at the rwB97XD/6-311++g(d,p)/6-
31g(d)/cpcm=tetrahydrofuran/298K level of theory.

AG (kcal/mol)
0.0 —
Phy o o. S
ll,' /\ Ph
Ph Zn Zn - :
y, 1 NA? N\ 4.3 — Me;S;i ( )
', (@) Nl\“ N (@)
Ph Me3S| \H Ph
°, A= /O
Ph zi 70 Ph MeaSi siMes
", [/ O/ \N"‘“‘ 7.3 — N\H
+THF Ph o, o,|d_ /"
+HMDSH Ph Lo Ph
tny,, / \O/ \ W
“N N
Structure G (Hartree) AG (kcal mol™)

[LZn,Et])’ + THF + HMDSH
[LZn.Et(HMDSH)(THF)]’
[LZn,Et(THF)(HMDSH)T’

-5601.433252
-5601.440815
-5601.451738

+0.0 (reference)
4.3
-7.3

According to the calculations detailed in Table S10, the coordination of one THF molecule and one
HMDSH molecule to the zinc atom is favoured. The molecular structure of 3’ ([LZn,Et(THF)(HMDSH)]’)
with the lowest free enthalpy computed is shown in Figure S72. In that structure, some hydrogen
bonding between the amine proton and one of the ligand’s benzylic oxygen atoms can be seen, which

may be a source of additional stabilisation.
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Figure S72. Molecular structure of complex 3’ ([LZn,Et(THF)(HMDSH)]’), computed at the rwB97XD/6-
311++g(d,p)/6-31g(d)/cpcm=tetrahydrofuran/298K level of theory.
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Comparison of atomic charges in 1’-3’

Natural

population analysis was conducted on the optimised molecular structures of 1’

([LMgZnEt(THF)(HMDSH)]), 2’ ([LCaZnEt(THF)(HMDSH)]) and 3’ ([LZnEt(THF)(HMDSH)]), as shown in

Figure S72.
MesSi siMes
Qo ~
Ph 's) !
o) , o, o) 0
Ph Zn<\/M Ph “, 7N M/
n,,, / 0) \N ! _— N /
/ o7\
N N
M = Mg, Ca or Zn M = Mg, Ca or Zn
-1.65 -1.68 -1.64
N N N
1. -0.76 . -0.73 -1.01 -0
1010,, -1-06(?; o, 0-1.11 1010,, -1.0% o, 0-1.08 o, -7-07C o, 0-1.08
O\ “ VN “ VN
1.30Zn M{1.90 1.29Zn ca1.87 1.32Zn Zn 1.59
/ \O/ 9\ / \O/ \ / \O/
-0.64N -1.04 N -0.70 -0.64N -1.00 N -0.65 -0.64N -1.01 N -0.70

Figure S73. Selected natural population analysis charges in 1’-3’.
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Computed molecular structure of complex 8’

Several possible molecular structures of complex 8’ ([LMgZnOBnN]’) were optimised and their relative

free enthalpies were compared. In particular, the relative position of the OBn group was investigated.

Table S11. Free enthalpies computed for complex 8 at the

31g(d)/cpcm=tetrahydrofuran/298K level of theory.

A AG (kcal/mol)

+15.4 ——
Ph
Phy o r o.
Ph ol md Ph
'y, / \O/ A
IN N\\
0.0 — o
Ph_o, o( o Ph
P ;Zn<O:M9 Ph
"y, N N www
Structure G (Hartree)
[LMgZn(OBn)Y’ (bridging) —4284.826986
[LMgZnOBn)’ —-4284.802414
[LMgOBnZn)’ —4284.804452

rwB97XD/6-311++g(d,p)/6-

+14.1— Ph
Ph o o, o /M
K k4 Ph
Ph Zn Mg
iy, / \O/ \N W

AG (kcal mol™)
+0.0
+15.4
+14.1

According to the calculations detailed in Table S11, a bridging benzoxide group between the zinc and

magnesium atoms is favoured. The molecular structure of 8’ with the lowest free enthalpy computed

is shown in Figure S74.
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Figure S74. Molecular structure of complex 8’, computed at the rwB97XD/6-311++g(d,p)/6-
31g(d)/cpcm=tetrahydrofuran/298K level of theory.

The coordination of THF and HMDSH molecules to 8’ was also investigated. In agreement with results
in Table S11, a bridging benzoxide between the zinc and magnesium atoms was also favoured in the

presence of THF and HMDSH and only those structures are detailed in Table S12.
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Table S12. Free enthalpies computed for complex 8’ in the presence of THF and HMDSH at the

rwB97XD/6-311++g(d,p)/6-31g(d)/cpcm=tetrahydrofuran/298K level of theory.

A AG (kcal/mol)

0.0 —
Ph 0.7 —

Ph, o \1 AL

Ph
Me3S|/N

?o

=

Ph, o Ph

,

"

o |
O3/ ﬁ/\ ¢} /
Ph Zn_ Fh 2 THF P g
My, /O v - ', / 07N
" N ! N e N ! N w

Ph
Ph

o

llll

%, O0n /
LN Ph 6.1 —
Ph Zn M (N /
ny,,, / \O/ g\ aw |t ﬁ/\ \Mg
‘N N i, e
9.1 — -8.8 — Me38| Z S
Ph

o s
Structure G (Hartree) AG (kcal mol™)
THF —232.315175
HMDSH —873.63778
[LMgZn(OBn)]’ (bridging) -4284.826986 +0.0 (reference)
[LZn(OBn)Mg(THF)]’ — THF -4284.841482 -9.1
[LZn(OBn)Mg(THF).])’ — 2 THF -4284.828086 -0.7
[LZn(OBn)Mg(THF)(HMDSH)]’ — THF — HMDSH -4284.840971 -8.8
[LZn(OBn)Mg(HMDSH)(THF)]’ — THF — HMDSH -4284.836772 -6.1

Me3S| | SiMes

ﬁ/\O |

- THF

/

gE

- HMDSH

According to the calculations detailed in Table S12, a bridging benzoxide group between the zinc and

magnesium atoms in 8’ is favoured, as well as the coordination of one molecule of THF, with or without

an additional molecule of HMDSH. Conversely, the coordination of two molecules of HMDSH to 8’ was

not found to be possible, with systematic decoordination of the second equivalent of HMDSH

occurring.
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Computed molecular structure of complex 9’

Several possible molecular structures of complex 9’ ([LCaZnOBnN]’) were optimised and their relative

free enthalpies were compared. In particular, the relative position of the OBn group was investigated.

Table S13. Free enthalpies computed for complex 9’ at the rwB97XD/6-311++g(d,p)/6-
31g(d)/cpcm=tetrahydrofuran/298K level of theory.
A AG (kcal/mol)
85—  pp,
Phy o jo,’ o fh
“ k4 Ph
Z c
Ph 'Il,,ll /n\ - a\ W
lN Nl\
+89 —
Ph
Ph, o I/ o. f/h
Ph > of Ph
ny,, / ~o” \ o
0y N.n
0.0 — oh
Ph O," o( /O Ph
P, '/Znio:Cz_i Ph
"y, N'“‘“
Structure G (Hartree) AG (kcal mol™)

[LCaZn(OBnN)]’ (bridging) -4762.370302

[LCaZnOBnY’ —4762.356074

[LCaOBnZn)’ —4762.340847

+0.0
+8.9
+18.5

According to the calculations detailed in Table S13, a bridging benzoxide between the zinc and calcium

atoms is favoured. The molecular structure of 9’ with the lowest free enthalpy computed is shown in

Figure S75.
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Figure S75. Molecular structure of complex 9’, computed at the rwB97XD/6-311++g(d,p)/6-
31g(d)/cpcm=tetrahydrofuran/298K level of theory.

The coordination of THF and HMDSH molecules to 9’ was also investigated. In agreement with results
in Table S13, a bridging benzoxide between the zinc and calcium atoms was also favoured in the

presence of THF and HMDSH and only those structures are detailed in Table S14.
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Table S14. Free enthalpies computed for complex 9’ in the presence of THF and HMDSH at the
rwB97XD/6-311++g(d,p)/6-31g(d)/cpcm=tetrahydrofuran/298K level of theory.

A AG (kcal/mol)

Ph ﬁ AL

o)
%, 0./
" AU Ph -53 —
P v, 70" Ph O Me3Si
'""'N N'“‘“ \I 6.3 Me3S| 6.3 —— 3 \,SiMe;;
| | ] Ph, o oS & o (},N
/ !

Q
'l,, n\ /(':/ 6 — ME3SI H |/O /”" /O Ph
a Nu
- THF Ké) Ké)
— THF - THF
-2 THF - HMDSH - HMDSH
Structure G (Hartree) AG (kcal mol™)
THF —232.315175
HMDSH —-873.63778
[LCaZn(OBnN)]’ (bridging) -4762.370302 +0.0 (reference)
[LZn(OBn)Ca(THF))’ — THF -4762.378819 -5.3
[LZn(OBn)Ca(THF).])’ — 2 THF -4762.383962 -8.6
[LZn(OBn)Ca(THF)(HMDSH)]’ — THF — HMDSH -4762.380351 -6.3
[LZn(OBn)Ca(HMDSH)(THF)]’ — THF — HMDSH -4762.380375 -6.3

According to the calculations detailed in Table S14, a bridging benzoxide between the zinc and calcium
atoms in 9’ is favoured, as well as the coordination of one or two molecules of THF and one molecule
of HMDSH. Conversely, the coordination of two molecules of HMDSH to 9’ was not found to be

possible, with systematic decoordination of the second equivalent of HMDSH occurring.
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Coordination of LA to 8’ and the first nucleophilic attack

The coordination of one molecule of L-LA or D-LA to 8’ was investigated. The transition state of the

nucleophilic attack on the LA carbonyl group by the M-OBn group of 8’ was also studied, modelling

the first step of the ROP mechanism. In agreement with results in Table S11, a bridging benzoxide

between the zinc and magnesium atoms was also favoured in the presence of LA and only those

structures are detailed in Table S15. The calculated molecular structures of [LZn(OBn)Mg(L-LA)])’ and

[LZn(OBNn)Mg(D-LA)]’ are displayed in Figures S76-79, respectively.

Table S15. Free enthalpies computed for the coordination of LA to complex 8 at the rwB97XD/6-
311++g(d,p)/6-31g(d)/cpcm=tetrahydrofuran/298K level of theory.

A AG (kcal/mol)
+14.6,—

/O\ /
Mg
é'rn \

Structure
L-LA
D-LA
[LMgZn(OBn)]’ (bridging)
[LZn(OBn)Mg(L-LA)]’ —L-LA
[LZn(OBn)Mg(p-LA)]’ — D-LA
TS [LZn(OBn)Mg(L-LA)]’ — L-LA
TS [LZn(OBn)Mg(D-LA)]’ — D-LA

-t

G (Hartree)
—534.197243

—534.19722
—4284.826986
—4284.830968
—4284.838477
—4284.803653
—4284.802824

+15.2—,

t

AG (kcal mol™)

+0.0 (reference)
-2.5
-7.2
+14.6
+15.2

According to the calculations detailed in Table S15, the transition state of the nucleophilic attack on

the carbonyl group of the coordinated LA molecule by the M-OBn group of 8’ is lower for L-LA than D-

LA.
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Figure S76. Molecular structure of [LZn(OBn)Mg(L-LA)]’, computed at the rwB97XD/6-311++g(d,p)/6-
31g(d)/cpcm=tetrahydrofuran/298K level of theory, from the front perspective.

Figure S77. Molecular structure of [LZn(OBn)Mg(L-LA)]’, computed at the rwB97XD/6-311++g(d,p)/6-
31g(d)/cpcm=tetrahydrofuran/298K level of theory, from the side-on perspective.
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Figure S78. Molecular structure of [LZn(OBn)Mg(p-LA)]’, computed at the rwB97XD/6-311++g(d,p)/6-
31g(d)/cpcm=tetrahydrofuran/298K level of theory, from the front perspective.

Figure S79. Molecular structure of [LZn(OBn)Mg(p-LA)]’, computed at the rwB97XD/6-311++g(d,p)/6-
31g(d)/cpcm=tetrahydrofuran/298K level of theory, from the side-on perspective.

The coordination of THF and HMDSH molecules to [LZn(OBn)Mg(L-LA)]’ and [LZn(OBn)Mg(p-LA)]’ was
also investigated (Table S16). Only structures susceptible to allow for the nucleophilic attack of the LA

carbonyl group by the M-OBn moiety were considered.
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Table S16. Free enthalpies computed for the coordination of THF and HMDSH to [LZn(OBn)Mg(L-LA)]’
and [LZn(OBn)Mg(p-LA)]’ at the rwB97XD/6-311++g(d,p)/6-31g(d)/cpcm=tetrahydrofuran/298K level

of theory.
AG (kcal/mol)

Coordination of L-LA

AG (kcal/mol)

Coordination of p-LA

Structure
THF
HMDSH
L-LA
D-LA
[LMgZn(OBn)]’ (bridging)
[LZn(OBn)Mg(L-LA)]’ — L-LA
[LZn(OBn)Mg(L-LA)(THF))’ — THF — L-LA
[LZn(OBn)Mg(L-LA)(HMDSH))’ — HMIDSH — L-LA
[LZn(OBn)Mg(p-LA)]’ — D-LA
[LZn(OBn)Mg(D-LA)(THF)]’ — THF — D-LA

[LZn(OBn)Mg(D-LA)(HMDSH)]’ — HMDSH — p-LA
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According to the calculations detailed in Table S16, coordination of one THF molecule to the
magnesium centre of 8’ is most favoured in the presence of L-LA, with coordination of one molecule
of HMDSH more favoured than no Lewis donor coordination at all. Conversely, in the presence of D-

LA, the most stable molecular structure involves no Lewis donors, albeit coordination of one molecule

of HMDSH is also favourable.
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Coordination of LA to 9’ and the first nucleophilic attack

The coordination of one molecule of L-LA or D-LA to 9’ was investigated. The transition state of the

nucleophilic attack on the LA carbonyl group by the M-OBn group of 9’ was also studied, modelling

the first step of the ROP mechanism. In agreement with results in Table S13, a bridging benzoxide

between the zinc and calcium atoms was also favoured in the presence of LA and only those structures

are detailed in Table S17. The calculated molecular structures of [LZn(OBn)Ca(L-LA)]’ and

[LZn(OBn)Ca(p-LA)]’ are displayed in Figures 6 and S80-81.

Table S17. Free enthalpies computed for the coordination of LA to complex 9’ at the rwB97XD/6-
311++g(d,p)/6-31g(d)/cpcm=tetrahydrofuran/298K level of theory.

A AG (kcal/mol)

Structure
L-LA
D-LA

[LCaZn(OBnN)]’ (bridging)
[LZn(OBn)Ca(L-LA)])’ — L-LA
[LZn(OBn)Ca(D-LA)])’ — D-LA

TS [LZn(OBn)Ca(L-LA)]’ — L-LA
TS [LZn(OBn)Ca(p-LA)]’ — D-LA

+156.5—

- Q ok

AAGTs(L-La) = 18.3 keal/mol

— o —

o)

%

’\
Ph 3 Ph
0, ~d O
A NV Ph
Ph Zn____Ca
i, /07T N\
‘N | N

-D-LA

G (Hartree)
—534.197243
-534.19722
—4762.370302
-4762.374778
—4762.38427
—4762.345528
—4762.342281

+17.6 —

AAGrg(p-La) = 26.4 kcal/mol

t

0
\\ 1,
s
8.8 O\n)"”

Ph

Ph o, W %o

Ph 02

iy, [ SO7\

AG (kcal mol™)

+0.0 (reference)
-2.8
-8.8
+15.5
+17.6

According to the calculations detailed in Table S17, the transition state of the nucleophilic attack on

the carbonyl group of the coordinated LA molecule by the M-OBn group of 9’ is lower for L-LA than D-

LA.
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Figure S80. Molecular structure of [LZn(OBn)Ca(L-LA)]’, computed at the rwB97XD/6-311++g(d,p)/6-
31g(d)/cpcm=tetrahydrofuran/298K level of theory, from the side-on perspective.

Figure S81. Molecular structure of [LZn(OBn)Ca(p-LA)]’, computed at the rwB97XD/6-311++g(d,p)/6-
31g(d)/cpcm=tetrahydrofuran/298K level of theory, from the side-on perspective.

The coordination of THF and HMDSH molecules to [LZn(OBn)Ca(L-LA)])’ and [LZn(OBn)Ca(p-LA)]’ was
also investigated (Table S18). Only structures susceptible to allow for the nucleophilic attack of the LA

carbonyl group by the M-OBn moiety were considered.
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Table S18. Free enthalpies computed for the coordination of THF and HMDSH to [LZn(OBn)Ca(L-LA)]’
and [LZn(OBn)Ca(p-LA)]’ at the rwB97XD/6-311++g(d,p)/6-31g(d)/cpcm=tetrahydrofuran/298K level

of theory.
A AG (kcal/mol)
Coordination of L-LA
o}
00— b o
Ph o o Ph 2.8 — O
Ph "'Zn\ 4 Ph Q
"y, / \ aw |V =
N \e
- L-LA
A AG (kcal/mol)
Coordination of p-LA
0.0 —
Ph
Ph Ph
Ph O"Zn’o\c:fo Ph " i
v, /O el o
8.8 — O
Ph
Ph Q Ph
Ph O""Zn'\o jc:fo Ph
, / (0} \ ]
N | \
-p-LA
Structure
THF
HMDSH
L-LA
D-LA
[LCaZn(OBnN)]’ (bridging)
[LZn(OBn)Ca(L-LA)]’ — L-LA
[LZn(OBn)Ca(L-LA)(THF)]’ — THF — L-LA
[LZn(OBn)Ca(L-LA)(HMDSH)]’ — HMDSH — L-LA
[LZn(OBn)Ca(p-LA)]’ — D-LA
[LZn(OBn)Ca(D-LA)(THF)])’ — THF — D-LA
[LZn(OBn)Ca(p-LA)(HMDSH)]’ — HMDSH — b-LA
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According to the calculations detailed in Table S18, coordination of one THF molecule to the calcium
centre of 9’ is most favoured in the presence of L-LA, with coordination of one molecule of HMDSH
more favoured than no Lewis donor coordination at all. In the presence of D-LA, the most stable
molecular structure also involves one molecule of THF, albeit structures involving the coordination of

one molecule of HMDSH or no Lewis donor coordination at all are also favourable.
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