Electronic supplementary information

Surface defect engineered CeO_{2-x} by ultrasound treatment for superior

photocatalytic H₂ production and water treatment

Sujay Shekar G. C.¹, Khaled Alkanad¹, Gubran Alnaggar², Nabil Al-Zaqri³, Mohammed

Abdullah Bajiri⁴, Thejaswini B.⁵, Dhileepan M. D.⁶, Bernaurdshaw Neppolian⁶,

Lokanath N. K.^{1*}

¹Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570006, India

²Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570006, India

³Department of Chemistry, College of Science, King Saud university, Riyadh 11451, Saudi Arabia

⁴Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta 577451, India

⁵PG Department of Physics, St. Philomena's College, University of Mysore, Bannimantap, Mysuru 570015, India

⁶Energy and Environmental Remediation Lab, SRM-Research Institute of Science and Technology, Chennai 603203, India

*E-mail: lokanath@physics.uni-mysore.ac.in

Figure S1. EDAX study of U-Ceo_{2-x} sample.

Catalyst	Ce ³⁺ %	Ce ⁴⁺ %	0 _c %	H ₂	BB	Phenol
				production	degradation	degradation
				(µmol h ⁻¹ g ⁻¹)	(in %)	(in %)
CeO ₂	54.44	45.56	-	950	44	39
U-CeO _{2-x}	59.54	40.46	15.64	2570	95.2	94.5

Table S1. Relative surface concentration of Ce³⁺ and oxygen vacancy based on XPS analysis.

Figure S2. TPR spectra of the synthesized samples.

Figure S3. TOC analysis of the BB dye and phenol.

Figure S4. ESR spectra detecting •OH in the presence of DMPO in water.

Figure S5. ESR spectra detecting ${}^{\bullet}O_{2}{}^{-}$ in the presence of DMPO in methanol.

Figure S6. ESR spectra detecting ¹O₂ in the presence of TEMP.

Catalyst	Degradation factors	Pollutant	Degradation efficiency (%)	Reaction time (mins)	Reference
W0 ₃ -ZnO	Sonocatalytic degradation Dosage: 2 g/L	BB dye	90	40	1
TiO ₂	Dosage: 0.5 g/L pH: 6 H ₂ O ₂ : 0.2 mmol/L	BB dye	97.7	180	2
ZnO	Dosage: 0.35 mg/L pH: 3 Temperature: 35 °C	BB dye	90	15	3
Ag-ZnO	Dosage: 0.08 mg/L pH: 12	BB dye	97.14	180	4
Bi ₂ WO ₆	Dosage: 0.75 g/L pH: 12 H ₂ O ₂ : 0.04 mmol/L	BB dye	>99	300	5
NCN/BiWO	Dosage: 1 g/L	Phenol	93.1	240	6
g-C ₃ N ₄ /CNT/BiVO ₄	H ₂ O ₂ : 5 % vol	Phenol	80.6	120	7
2D-CN	Dosage: 0.5 g/L	Phenol	>90	60	8
Bi ₂ O ₃ /Bi ₂ MoO ₆	Dosage: 0.08 g/L	Phenol	96.4	180	9
MgO@Ag_TiO ₂	Dosage: 0.2 g/L	Phenol	95	120	10

Table S2. Reported literatures of BB dye and phenol degradation.

Figure S7. LC-MS spectra of BB dye at (a) 0 min (b) 10 mins (c) 30 mins.

Figure S9. LC-MS spectra of Phenol at (a) 0 min (b) 10 mins (c) 30 mins (d) 80 mins.

Figure S10. Degradation pathway of Phenol.

References

- 1. Y. Hunge, A. Yadav and V. Mathe, *Ultrason. Sonochem.*, 2018, **45**, 116-122.
- 2. Y. Liu, L. Hua and S. Li, *Desalination*, 2010, **258**, 48-53.
- 3. S. Su, S. Lu and W. Xu, *Mater. Res. Bull.*, 2008, **43**, 2172-2178.
- 4. T. Parvin, N. Keerthiraj, I. A. Ibrahim, S. Phanichphant and K. Byrappa, *International Journal of Photoenergy*, 2012, **2012**.
- 5. N. A. Shad, M. Zahoor, K. Bano, S. Z. Bajwa, N. Amin, A. Ihsan, R. A. Soomro, A. Ali, M. I. Arshad and A. Wu, *Inorg. Chem. Commun.*, 2017, **86**, 213-217.

- 6. D. Zhu and Q. Zhou, *Appl. Catal. B*, 2020, **268**, 118426.
- 7. M. F. R. Samsudin, N. Bacho, S. Sufian and Y. H. Ng, *J. Mol. Liq.*, 2019, **277**, 977-988.
- 8. H. Lv, Y. Huang, R. T. Koodali, G. Liu, Y. Zeng, Q. Meng and M. Yuan, *ACS applied materials & interfaces*, 2020, **12**, 12656-12667.
- F. Fu, H. Shen, W. Xue, Y. Zhen, R. A. Soomro, X. Yang, D. Wang, B. Xu and R. Chi, *J. Catal.*, 2019, **375**, 399-409.
- 10. T. Scott, H. Zhao, W. Deng, X. Feng and Y. Li, *Chemosphere*, 2019, **216**, 1-8.