Graphene Supported Single Metal Atom Catalysts for Efficient Hydrogen Oxidation Reaction in Alkaline Media

Lianming Zhao*, Xiaonan Han, Weichao Kong, Yanfu Tong, Yanping Ding, Jiajun

Wang, Bingyu Li, Yonghui Liu, Jing Xu*, Wei Xing

School of Materials Science and Engineering, China University of Petroleum (East

China), Qingdao, Shandong 266580, PR China

*Corresponding authors.

E-mail addresses: lmzhao@upc.edu.cn (L. Zhao), xujing@upc.edu.cn (J. Xu).

Table of contents

1. Binding energy, M-ortho-C distance, and height of metal atoms over the graphene
surface for
M/GS-3
2. Bond lengths and bond angle for the adsorption on M/GS-4
3. Adsorption energy of H* on M/G with and without OH*S-5
4. Adsorption energy of H_2^* on M/G with and without OH*S-6
5. Adsorption energy of H_2O^* on M/G with and without OH*S-7
6. Rate constants for the reactions involved in the HOR on M/G at 298 KS-8
7. Rate constants for the reactions involved in the HOR on M/G at 340 KS-9
8. Side and top views of the configurations for M/G with K^+OH^- solutionS-
10
9. Population of Hirshfeld charges in M/GS-
11
10. Density of states of the M/G catalystsS-
12
11. Adsorption configurations of OH*, H*, H ₂ *, and H ₂ O* on M/GS-
13
12. Optimized structures of DG, DG-4H, and DG-8HS-
14
13. Co-adsorption configurations of OH* with H*, H_2 *, and H_2O * on M/GS-
15
14. Phase diagram showing the free energy for different surface structures for water in
contact with M/GS-
16

Table S1 Calculated binding energy of M with the divacancy graphene (E_b), distance of M–*ortho*-C (d(M–*ortho*-C)), and height (h(M)) of M over the graphene surface for M/G.

Catalysts	$E_{\rm b}({\rm eV})$	d(M-ortho-C) (Å)	h(M) (Å)
Cr/G	-4.03 (-4.18)	1.974	0.757
Mn/G	-4.27 (-4.41)	1.957	0.693
Fe/G	-5.22 (-5.40)	1.939	0.628
Co/G	-5.64 (-5.77)	1.892	0.491
Ni/G	-6.28 (-6.43)	1.891	0.017
Pt/G	-7.10 (-7.16)	1.981	0.763

Note: (i) Values in the parentheses are the results calculated by the HSE06 functional. (ii) The binding energy (E_b) of M with the divacancy graphene (DG) for M/G was calculated by the equation:

$$E_{\rm b} = E_{\rm M/G} - (E_{\rm M} + E_{\rm DG})$$

where $E_{M/G}$, E_M , and E_{DG} are the total energy of M/G, the metal atom M, and the graphene with a divacancy defect, respectively.

Catalysts	$E_{ads}(H^*)$ (eV)	$E_{ads}(H^{+}OH^{+}) (eV)$
Cr/G	-3.08	-2.88
Mn/G	-2.94	-2.87
Fe/G	-2.98	-2.91
Co/G	-3.01	-2.86
Ni/G	-2.97	-2.80
Pt/G	-2.90	-2.68

Table S2 Calculated adsorption energy (E_{ads}) of H* on M/G with and without OH*.

Catalysts	$E_{ads}(H_2^*)$ (eV)	$E_{ads}(H_2*+OH*)$ (eV)
Cr/G	-0.16	-0.83
Mn/G	-0.16	-0.82
Fe/G	-0.15	-0.30
Co/G	-0.15	-0.31
Ni/G	-0.16	-0.20
Pt/G	-0.19	-0.27

Table S3 Calculated adsorption energy (E_{ads}) of H₂* on M/G with and without OH*.

Catalysts	$E_{\rm ads}({\rm H_2O^*})~({\rm eV})$	$E_{ads}(H_2O^{+OH^{+}})$ (eV)
Cr/G	-0.43	-0.62
Mn/G	-0.41	-0.62
Fe/G	-0.39	-0.62
Co/G	-0.38	-0.62
Ni/G	-0.36	-0.58
Pt/G	-0.36	-0.63

Table S4 Calculated adsorption energy (E_{ads}) of H₂O* on M/G with and without OH*.

Species	Parameters	Cr/G	Mn/G	Fe/G	Co/G	Ni/G	Pt/G
OH*	d(M–OH)	1.759	1.747	1.751	1.778	1.842	2.042
H ₂ *	$d(M-H_2)$	3.196	3.118	3.041	2.848	2.572	2.569
H_2O^*	d(M–H ₂ O)	3.087	3.041	2.861	2.980	2.764	2.518
H*	<i>d</i> (<i>ortho</i> -C–H)	1.131	1.126	1.120	1.129	1.129	1.100
H*	<i>θ</i> (H–C–C)	113.8	114.4	114.8	114.3	116.7	115.5

Table S5 Calculated bond lengths (*d*) and bond angle (θ) for the adsorption on M/G.

Catalvata	Tafel	Heyrovsky	${\rm H_{2}}^{*}\!\!+\!\!{\rm OH}^{*}$	Volmer	H*+OH*
Catalysts	(s^{-1})	(s^{-1})	(s^{-1})	(s^{-1})	(s^{-1})
Cr/G	5.14×10 ⁵	5.72×10 ⁵	4.88×10 ⁻⁷	3.87×10 ¹¹	3.87×10 ⁻⁴
Mn/G	4.31×10 ⁶	9.81×10 ⁷	4.93×10 ⁻⁷	8.32×10 ⁹	3.17×10 ²
Fe/G	2.48×10 ⁴	6.98×10 ⁵	6.37×10 ⁻⁸	1.89×10 ⁷	4.23×10 ²
Co/G	6.38×10 ³	5.76×10^{6}	1.37×10 ⁻¹¹	6.53×10 ¹⁰	2.17×10 ²
Ni/G	3.17×10 ²	8.72×10 ⁷	1.36×10 ⁻⁹	3.22×10 ⁹	2.13×10 ¹
Pt/G	6.51×10 ⁶	2.37×10 ⁸	1.41×10^{-2}	5.87×10 ¹³	3.47×10 ³

Table S6 Rate constants (k) for the elementary reactions involved in the HOR on M/G at 298 K.

Catalysta	Tafel	Heyrovsky	H ₂ *+OH*	Volmer	H*+OH*
Catalysts	(s^{-1})	(s^{-1})	(s^{-1})	(s^{-1})	(s^{-1})
Cr/G	1.97×10 ⁶	6.48×10 ⁶	1.78×10^{-5}	1.18×10 ¹²	6.23×10 ⁻⁶
Mn/G	3.41×10 ⁶	9.14×10 ⁸	5.27×10^{-6}	7.22×10 ⁸	5.31×10 ¹
Fe/G	2.89×10 ⁵	8.06×10^{6}	6.33×10 ⁻¹⁰	3.19×10 ⁸	7.63×10 ²
Co/G	4.11×10 ⁵	1.33×10 ⁷	2.93×10 ⁻⁹	4.13×10 ¹⁰	1.71×10 ³
Ni/G	3.17×10 ⁴	4.73×10 ⁸	4.55×10 ⁻⁹	1.10×100 ⁹	2.14×10 ³
Pt/G	9.58×10 ⁷	1.01×10^{10}	3.01×10 ⁰	8.87×10 ¹²	1.58×10 ⁵

Table S7 Rate constants k for the elementary reactions involved in the HOR on M/G at 340 K.

Fig. S1 (a) Side and (b) top views of the configurations for the M/G catalysts with the K^+OH^- solution.

Fig. S2 Population of Hirshfeld charges (in e) in the M/G catalysts.

Fig. S3 Partial density of states (PDOS) of the M/G catalysts.

Fig. S4 Optimized structures of DG-nH: (a) DG, (b) DG-4H, and (c) DG-8H. Values in the parentheses are the energies calculated by the following equation: $E_{rel} = E_{DG-nH}$

 $-E_{\text{DG}} - \frac{n}{2}\mu_{H_2}$, where $E_{\text{DG-nH}}$ and E_{DG} are the total energy of DG-nH and DG, respectively. μ_{H_2} is the chemical potential of the H₂ molecule.

Fig. S5 Adsorption configurations of (a) OH*, (b) H*, (c) H_2 *, and (d) H_2O * on the M/G catalysts.

Fig. S6 Co-adsorption configurations of (a) H*+OH*, (b) H₂*+OH*, and (c) $H_2O^*+OH^*$ on the M/G catalysts.

Fig. S7 Phase diagram showing the free energy for different surface structures for water in contact with (a) Cr/G, (b) Mn/G, (c) Fe/G, (d) Co/G,

(e) Ni/G, and (f) Pt/G. The free energy for liquid water at 340 K is defined as $\Delta G^{water}(U) = 0$ (pink line). $\Delta G^{water}_{H^*}(U) = \Delta G^{water}_{H^*}(0) + eU$ (red line), $\Delta G^{water}_{OH^*}(U) = \Delta G^{water}_{OH^*}(0) - eU$ (green line), and $\Delta G^{water}_{O^*}(U) = \Delta G^{water}_{O^*}(0) - 2eU$ (blue line).