## **Supporting Information**

## Effect of Co, Cu, and Zn on FeAlK catalyst in CO<sub>2</sub>

## hydrogenation to C<sub>5+</sub> hydrocarbons

Khasan Nasriddinov<sup>1,2</sup>, Ji-Eun Min<sup>2</sup>, Hae-Gu Park<sup>2</sup>, Seung Ju Han<sup>2</sup>, Jingyu Chen<sup>1,2</sup>, Ki-Won Jun<sup>1,2\*</sup>, Seok Ki Kim<sup>1,2\*</sup>

<sup>1</sup> Advanced Materials and Chemical Engineering, School of Science, Korea University of Science and Technology (UST), Yuseong, Daejeon, 305-333, Republic of Korea <sup>2</sup> C1 Gas Conversion Research Group, Carbon Resources Institute, Korea Research Institute of Chemical Technology (KRICT), Yuseong, Daejeon, 34114, Republic of Korea

\*Corresponding Author

Email: kwjun@krict.re.kr (KWJ); skkim726@krict.re.kr (SKK)

## Contents

| <b>Figure S1</b> . Fresh catalysts XRD analysis. Each symbols stands for $\blacktriangle$ Fe <sub>2</sub> O <sub>3</sub> (JCPDS 84-                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0310);                                                                                                                                                                                 |
| <b>Figure S2.</b> Spent catalysts XRD analysis. Each symbols stands for $\blacktriangle$ Fe <sub>2</sub> O <sub>3</sub> (JCPDS 25-                                                     |
| 1202); $\blacklozenge$ Fe <sub>3</sub> O <sub>4</sub> (JCPDS 75-0449); $\diamondsuit$ Fe <sub>5</sub> C <sub>2</sub> (JCPDS 20-0509); $\Box$ Fe <sub>3</sub> C <sub>1</sub> (JCPDS 06- |
| 0688)                                                                                                                                                                                  |
| Figure S3. The relationship between CO <sub>2</sub> desorption and BET Surface area                                                                                                    |
| Figure S4. Fe 2p XPS of fresh catalysts. Fresh FeAlK, xCo-FeAlK, xCu-FeAlK and, xZn-                                                                                                   |
| FeAlK catalysts High Resolution XPS profiles                                                                                                                                           |
| Figure S5. Fe 2p XPS of spent catalysts. Fresh FeAlK, xCo-FeAlK, xCu-FeAlK and, xZn-                                                                                                   |
| FeAlK catalysts High Resolution XPS profiles                                                                                                                                           |
| Figure S6. Survey XPS spectra of spent catalysts7                                                                                                                                      |
| Figure S7. Spent xCo-FeAlK, xCu-FeAlK and, xZn-FeAlK catalysts Survey XPS profiles.                                                                                                    |
| 7                                                                                                                                                                                      |
| Figure S8. CO <sub>2</sub> conversion and products yield during 100 h of reaction                                                                                                      |



**Figure S1.** Fresh catalysts XRD analysis. Each symbols stands for  $\blacktriangle$  Fe<sub>2</sub>O<sub>3</sub> (JCPDS 84-

0310); EFe<sub>3</sub>O<sub>4</sub> (JCPDS 75-0449).



**Figure S2.** Spent catalysts XRD analysis. Each symbols stands for  $\blacktriangle$  Fe<sub>2</sub>O<sub>3</sub> (JCPDS 25-1202);  $\blacklozenge$  Fe<sub>3</sub>O<sub>4</sub> (JCPDS 75-0449);  $\diamondsuit$  Fe<sub>5</sub>C<sub>2</sub> (JCPDS 20-0509);  $\Box$  Fe<sub>3</sub>C<sub>1</sub> (JCPDS 06-0688).



Figure S3. The relationship between CO<sub>2</sub> desorption and BET Surface area.



Figure S4. Fe 2p XPS of fresh catalysts. Fresh FeAlK, xCo-FeAlK, xCu-FeAlK and, xZn-

FeAlK catalysts High Resolution XPS profiles.



Figure S5. Fe 2p XPS of spent catalysts. Fresh FeAlK, xCo-FeAlK, xCu-FeAlK and, xZn-

FeAlK catalysts High Resolution XPS profiles.

| Counts per second | Co 2p 0 1s Cu 2p 0 1s Zn 2p 0 1s   28Co-FeAlK K 2s 0 1s K 2pC 1s 28Cu-FeAlK K 2s |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12                | 00 1000 800 600 400 200 1200 1000 800 600 400 200 1200 1000 800 600 400 200<br>Binding energy (eV)                                                                                                                                                                                                                                                                                                                                            |

Figure S6. Survey XPS spectra of spent catalysts.



Figure S7. Spent xCo-FeAlK, xCu-FeAlK and, xZn-FeAlK catalysts Survey XPS profiles.



Figure S8. CO<sub>2</sub> conversion and products yield during 100 h of reaction.