## Supporting Information

## Intensifying strategy of ionic liquid for Pd-based catalysts in anthraquinone hydrogenation

Fuying Wang<sup>a</sup>, Yiming Jia<sup>a</sup>, Jingyue Liang<sup>a</sup>, Jinli Zhang<sup>a</sup>, Xiaoyan Li<sup>b, \*</sup>, Wei Li<sup>a, \*</sup>

<sup>a</sup> School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350,

P. R. China.

<sup>b</sup> Department of Chemical Engineering, Tianjin Renai college, Tianjin 301636, P. R.

China.

\*Corresponding author:

E-mail: liwei@tju.edu.cn (W. Li); lixiaoyan1647@163.com (X. Li)



Fig. S1 (a)  $N_2$  adsorption-desorption isotherms and (b) the pore size distributions of catalyst samples (Barrett-Joyner-Halenda (BJH) method was used to calculate the pore volume and the pore size distribution. Brunauer-Emmett-Teller (BET) method was used to calculate the specific surface area.)



**Fig. S2** (a) STEM image of Pd/Al<sub>2</sub>O<sub>3</sub> catalyst; (b)-(d) elemental mapping images of Al (blue), O (orange) and Pd (green), respectively



Fig. S3 XPS Pd 3d spectra of (a) fresh Pd-2%IL and (b) fresh Pd-6%IL



Fig. S4 The stable structures and serial number of (a)  $Pd_6$  cluster, (b) IL and (c)  $Pd_6$ -IL. Carbon, hydrogen, oxygen, nitrogen, sulfur, palladium atoms are depicted in gray, white, red, blue, orange and green, respectively.



Fig. S5 The stable structure of EAQ. Carbon, hydrogen, oxygen, are depicted in gray,

white and red, respectively.



Fig. S6 Reaction paths of 2-ethyl-anthraquinone hydrogenation [1, 2].



**Fig.S7** The unwanted reaction pathway (EAQH<sub>2</sub> + H  $\rightarrow$  MHEOAN) with the optimized structure in the illustration: Co-adsorbed reactants (Co-ads), transition state (TS), product-adsorbed (Pr-ads). Carbon, hydrogen, oxygen, nitrogen, sulfur, palladium atoms are represented in gray, white, red, blue, orange and green balls, respectively

| Catalyst                          | Pd content (wt%) |
|-----------------------------------|------------------|
| Pd/Al <sub>2</sub> O <sub>3</sub> | 0.26             |
| Pd-1%IL                           | 0.24             |
| Pd-2%IL                           | 0.25             |
| Pd-3%IL                           | 0.24             |
| Pd-4%IL                           | 0.25             |
| Pd-5%IL                           | 0.28             |
| Pd-6%IL                           | 0.28             |
|                                   |                  |

Table S1 Actual load of Pd in catalysts by ICP-AES

Table S2 STY of  $H_2O_2$  for Pd/Al<sub>2</sub>O<sub>3</sub> and Pd-4%IL catalysts with different reaction time

| Sample -                          | STY (g g <sub>Pd</sub> <sup>-1</sup> h <sup>-1</sup> ) |        |        |
|-----------------------------------|--------------------------------------------------------|--------|--------|
|                                   | 15 min                                                 | 30 min | 45 min |
| Pd/Al <sub>2</sub> O <sub>3</sub> | 743                                                    | 684    | 512    |
| Pd-4%IL                           | 1229                                                   | 837    | 604    |

|        | Atom number                 | IL (e) | $Pd_6$ -IL (e) |
|--------|-----------------------------|--------|----------------|
| Cation | N1                          | -0.307 | -0.273         |
|        | C2                          | 0.204  | 0.069          |
|        | C3                          | 0.174  | 0.053          |
|        | N4                          | -0.304 | -0.270         |
|        | C5                          | 0.518  | 0.514          |
|        | C6                          | 0.297  | 0.297          |
|        | C7                          | 0.177  | 0.177          |
|        | C8                          | 0.065  | 0.095          |
|        | С9                          | -0.015 | 0.007          |
|        | C10                         | 0.044  | 0.078          |
| Anion  | O11                         | -0.626 | -0.577         |
|        | S12                         | 1.162  | 1.236          |
|        | O13                         | -0.549 | -0.485         |
|        | O14                         | -0.605 | -0.573         |
|        | O15                         | -0.236 | -0.192         |
|        | Total charge of major atoms | -0.001 | 0.156          |

Table S3 Charge distribution of major atoms in IL before and after adsorption of  $Pd_6$ 

(N1 to O15 are respectively the first to the fifteenth atoms in IL shown in Fig.S4.)

## References

[1] A. Li, Y.H. Wang, J. Ren, J.L. Zhang, W. Li, C.L. Guo, Enhanced catalytic activity and stability over P-modified alumina supported Pd for anthraquinone hydrogenation, Appl Catal a-Gen, 593 (2020).

[2] T. Kamachi, T. Ogata, E. Mori, K. Iura, N. Okuda, M. Nagata, K. Yoshizawa, Computational exploration of the mechanism of the hydrogenation step of the anthraquinone process for hydrogen peroxide production, The Journal of Physical Chemistry C, 119 (2015) 8748-8754.