Supporting information

The identification and application of a robust ω transaminase with high tolerance of substrate and isopropylamine from a directed soil metagenome

Youyu Xie,^{a#} Jiguo Wang,^{a#} Lin Yang,^a Wei Wang,^a Qinghai Liu,^a Hualei Wang,^{a,*} and Dongzhi Wei,^a

^aState Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China

#The authors contributed equally to this work.

*Corresponding author:

Hua-Lei Wang: hlwang@ecust.edu.cn

Entry	enzyme	Primer sequences (5'-3')	Restriction enzyme cutting site	GenBank accession no.	ldentity (%)ª
4	ATA1001	AACGCGGATCCATGAGCGCTGCCAAACTG	BamH I	۸۸۵۹۶۶72 1	100
1	ATA1001	AACCCAAGCTTCTAAGCCACTTCCTTGAG	Hind III	AAP92672.1	
2	ATA1002	AACGCGGATCCATGAACGCCCCCGCCGCCTT	BamH I	KGD90311.1	100
		AACCCAAGCTTTCATGCTACTTCCTTCAGGA	Hind III		
2	4744000	AACGCGGATCCATGCCCTTTACCGCCAAC	BamH I	N/D 025425250 4	100
3	ATA1003	AACCCAAGCTTTTACTTGGCGCGCTTCAA	Hind III	WP_025425250.1	
4	4741004	AACGCGGATCCATGAACCAGCACACCAAAC	ВатН І	NUD 02480200C 1	100
4	ATA1004	AACCCAAGCTTTTACTTGGCGCGCTTCAG	Hind III	WP_034802996.1	100
-	ATA1005	AACGCGGATCCATGCCGAACTCCGAGGCTTA	BamH I	N/D 0425420224	
5	ATA1005	AACCCAAGCTTTCAGGGCATGGATCGCAA	Hind III	WP_043543822.1	100
C	4741000	AACGCGGATCCATGCCGCACGCCGCCGAGCT	ВатН І		
6	ATA1006	AACCCAAGCTTTCAGGCCGTTTTCAGCACCT	Hind III	WP_043208183.1	100
-	4744007	AACGCGGATCCATGAACATGCCCGAAACC	BamH I		
7 ATA	ATA1007	AACCCAAGCTTTCAGTCGATCAGGTTCAG	Hind III	WP_054572853.1	100
		AACCGGAATTCATGTCCTCCTCAGCGCCTCA	EcoR I		99
8 A	ATA1008	AACCCAAGCTTTTACGCGTCCGCGCGCAATA	Hind III	WP_068979643.1	
0	4744000	AACGCGGATCCATGAACGCCCACAACAAG	BamH I	WP_037390420.1	100
9	ATA1009	AACCCAAGCTTTTACTGCACCCGTTTCAG	Hind III		
10	ATA1010	AACGCGGATCCATGCCCGATTTCGGCGCCAA	BamH I	WP_110133035.1	96
10		AACCCAAGCTTCTAATCCACGGCGGCAAGCA	Hind III		
11	4741011	AACCGGAATTCATGAGCCACGACGATCCCA	EcoR I	NO 100077707 1	92
11 ATA1011	ATAIUII	AACCCAAGCTTTCACAGCCCGTCCAGCACC	Hind III	WP_1623///8/.1	
12 ATA1012	ATA 1012	AACCGGAATTCATGACCGCCCCCCCCGCA	EcoR I	WD 110122860 1	98
	ATAIUIZ	AACCCAAGCTTTCAGTCCTCGCCCTCCTTA	Hind III	WP_110132869.1	
10	4744040	AACGCGGATCCATGGCCACCCCAAGCAAA	BamH I		100
13	ATA1013	AACCGCTCGAGTCATCGGCCGTGGTACAG	Xho I	WP_054572603.1	
14	ATA1014	AACGCGGATCCATGTCGAACAGCAGTGCA	BamH I	N/D 0225440024	100
14		AACCCAAGCTTTCAGGCCGTCATCACCTT	Hind III	WP_023511892.1	
15	ATA1015	GGGAATTCCATATGATGCTATCCAACCTCGCC	Nde I	WP_043238127.1	100
15		AACGCGGATCCTCAGGCCGCGAGCAAACCTT	BamH I		
10	ATA 101C	AACGCGGATCCATGGATGCGGTTCAAACT	BamH I	EXA90087.1	100
16	ATA1016	AACCGCTCGAGTTAATTCACTTGATAAAGC	Xho I		
17	4744047	AACGCGGATCCATGAACGCTCCGACGCCTC	BamH I	WP_023458938.1	100
	ATA1017	AACCGCTCGAGTCATAGGGCGCGCAGCAC	Xho I		
	ATA1018	AACCGGAATTCATGAGCCGCATCATCCAT	EcoR I		100
18		AACCCAAGCTTTTATGGCGTATCGTCCGC	Hind III	WP_013396903.1	
	ATA1019	AACGCGGATCCATGAAGCGTCCCGGAAGCGA	BamH I		99
19		AACCCAAGCTTTCAGGCCGTGGCCCGGATCAT	Hind III	WP_134734931.1	
~ ~		AACGCGGATCCATGTTTGATACGGATAAATTCAGTGAC	BamH I		
20	ATA1020	ΔΑΓΓΩΟΤΟΔΑΓΤΑΔΤΤΓΑΓΤΤΩΑΤΑΔΑΘΟΩΟΤΟΟΟ	Xho I	EXA90087.1	100

Table S1 The information of the 21 recombinant ω -transaminases from the mixed soil metagenomic

21	ATA1021	AACCGCTCGAGTTAATTCACTTGATAAAGC	Xho I	WP_023187880.1	100
24		AACGCGGATCCATGGTTATGTTTGATACGG	BamH I	MD 022107000 1	100

^a The identity means the amino acid sequence similarity to NCBI

Table S2 Initial screening results of the recombinant ω -transaminases towards the reductive amination of 1-Boc-3-piperidone with various equivalents of IPA as amine donor

	Conversion (%) ^a				
IPA equivalents	ATA1002	ATA1008	ATA1009	ATA1012	ATA1018
2	9.5	6.1	10.8	~100	4.4
3	10.6	6.3	12.2	~100	4.5
4	11.2	6.4	13.1	~100	4.5

^a The enzymes with no detectable activities were not shown.

Table S3 Analytic methods of the reductive amination activities toward various substrate ketones

		retention time (min)		
Analyte	elution conditions	amine	ketone	
2g	40% A/ 60% B, 1mL/min, 37 °C, 210nm	4.0	7.5	
2p	40% A/ 60% B, 1mL/min, 37 °C, 210nm	5.6	12	
2q	60% A/ 40% B, 1mL/min, 37 °C, 210nm	4.9	19.4	
2r	60% A/ 40% B, 1mL/min, 37 °C, 210nm	5.2	17.1	
2m	60% A/ 40% B, 1mL/min, 37 °C, 210nm	4.5	8.5	
2n	60% A/ 40% B, 1mL/min, 37 °C, 210nm	5.4	14	
20	60% A/ 40% B, 1mL/min, 37 °C, 210nm	7.2	16.4	
2k	48% A/ 52% B, 1mL/min, 37 °C, 210nm	5.7	12.8	
2i	48% A/ 52% B, 1mL/min, 37 °C, 210nm	4.3	10.4	
2h	48% A/ 52% B, 1mL/min, 37 °C, 210nm	5	14	
2ј	48% A/ 52% B, 1mL/min, 37 °C, 210nm	4.5	11.8	
21	48% A/ 52% B, 1mL/min, 37 °C, 210nm	4.5	7.6	
2s	28% C/ 72% B, 0.8mL/min, 37 °C, 210nm	4.2	14	
2t	28% C/ 72% B, 0.8mL/min, 37 °C, 210nm	4.7	12.5	
2a	GC Method A	3.2	3.7	
2c	GC Method A	4.1	4.7	
2e	GC Method A	7.2	8.9	
2b	GC Method A	5.7	3.8	
2d	GC Method A	3.8	4.4	

2f	GC Method B	45	54

A: MeOH (0.1 % TFA), B: water (0.1 % TFA), C: Acetonitrile (0.1 % TFA)

GC Method A: GC program parameters; injector 250 °C; flow rate 1mL/min; temperature program 60°C/hold 2 min.; 90 °C/rate 10 °C per min./hold 2 min; 160 °C/rate 10 °C per min./hold 2 min; 200 °C/rate 10 °C per min./hold 2 min.

GC Method B: GC program parameters; injector 250 °C; flow rate 1.2mL/min; temperature program 100°C/hold 0.5 min.; 250 °C/rate 10 °C per min./hold 2 min.

Glufosinate

Methylamino abamectin

Scheme S1 Overview of the structures of the amine group contained pesticides of (A) glufosinate and (B) methylamino abamectin, respectively.

Fig. S1 Multiple sequence alignment analysis. Alignment of multiple amino acid sequences of the ω -transaminases from *Vibro fluvialis* (GenBank accession no. 3NUI_A), *Chromobacterim violaceum* (GenBank accession no. WP_01135573.1), *Ruegeria sp* TM1040 (GenBank accession no. WP_011540005.1), *Achromobacter denitrificans* (GenBank accession no. AAP92672.1), ATA1002, ATA1008, ATA1009, ATA1012 and ATA1018. Red rectangles with dash line and labeled with the red rectangles represent residues in small binding pocket of the enzyme, and green cycle with dash line and marked with a round represent the residues in large binding pocket of the enzyme; The orange rectangles with dash line and labeled with the orange star represent catalytic residue in the active of the enzyme.

Fig. S2 Molecular mass of ATA1012. (A) SDS-PAGE analysis of cell free extracts and the purified enzyme of ATA1012. The lane 1 was the cell free extract of the ATA1012, lane 2 was the purified enzyme of ATA1012. (B) Calibration curve obtained with standard proteins from Apoferritin from horse spleen (443 kDa), β -Amylase from sweet potato (200 kDa), Alcohol Dehydrogenase from yeast (150 kDa), Carbonic Anhydrase from bovine erythrocytes (29 kDa). The molecular mass determination of purified enzyme of ATA1012 was calculated as referred in the reference ¹.

Fig. S3 Measurements of the apparent kinetic parameters by a Michaelis–Menten nonlinear regression of initial velocity vs. substrate concentration using Origin 8.0. (A) Michaelis–Menten plot of pyruvate concentration, $K_m = 1.88$ mM. (B) Michaelis-Menten plot of (S)-MBA concentration, $K_m = 1.31$ mM. (C) Michaelis-Menten plot of 1-Boc piperidone concentration, $K_m = 1.01$ mM. (D) Michaelis-Menten plot of IPA concentration, $K_m = 4.20$ mM.

Fig. S4 Effect of various co-solvents on catalytic activity of ATA1012, 10% of different co-solvents were incubated with ATA1012 for 1 h at 37°C.

Program: ERRAT2 File: 1.pdb Chain#:B Overall quality factor**: 95.735

Fig. S5 The result of the model assessment evaluated by the program ERRAT (A) and the program VERIFY3D (B) in the ATA1012.

Α

Fig. S6 The molecular docking analysis of the ATA1012. (A) The clustering analysis of docking conformation performed by autodock 4.2.6 suite; (B). Overview of the selected docking conformation with the most populated clustering and the lowest binding energy, which was used for further MD simulation.

Fig. S7 The molecular dynamic simulation result obtained by using Amber 16 with GAFF and ff99SB force filed. (A) RMSD of alpha-carbon atoms for ATA1012 during 100 ns MD simulation. (B) The distance between carbonyl carbon (C3) of the substrate ketone 2t and the PMP's exocyclic nitrogen atom during the 100 ns of MD simulation.

HPLC spectra of chiral amines

Fig. S8 HPLC analysis of the enantioselectivity of the amine product obtained by asymmetric amination of 2t. (A) The HPLC spectra of the (*Rac*)-amine standard sample of 1t; (B) The HPLC spectra of the amine product produced by ATA1012.

Fig. S9 HPLC analysis of the enantioselectivity of the amine product obtained by asymmetric amination of 2s. (A) The HPLC spectra of the (*Rac*)-amine standard sample of 1s; (B) The HPLC spectra of the amine product produced by ATA1012.

NMR spectra of the chiral amine products

Fig. S10 The ¹H NMR spectra of the amine product towards 1t. ¹H NMR (400 MHz, CDCl₃) δ /ppm: 3.90 (br, 1H), 3.8–3.7 (m, 1H), 2.8–2.7 (m, 2H), 2.5 (br, 1H), 1.9–1.8 (m, 1H), 1.7–1.6 (m, 1H), 1.4 (s, 9H), 1.3–1.1 (m, 2H).

Fig. S11 The ¹³C NMR spectra of the amine product towards 1t. ¹³C NMR (100 MHz, CDCl₃) δ 155.0, 79.6, 52.4, 47.7, 44.4 & 43.6, 34.0, 28.5, 23.8. (Two peaks in ¹³C NMR of the amine product seen for each carbon in the piperidine ring due to the restricted rotation around the amide bond).

Fig. S12 The ¹H NMR spectra of the amine product towards 1s. ¹H NMR (400 MHz, CDCl₃) δ /ppm: 3.6–3.3 (m, 4H), 3.1–2.9 (m, 1H), 2.1–1.9 (m, 1H), 1.7–1.6 (m, 1H), 1.5 (br, 2H), 1.4 (s, 9H).

Fig. S13 The ¹³C NMR spectra of the amine product towards 1s. ¹³C NMR (100 MHz, CDCl₃) δ 154.8, 79.2, 54.5 and 54.2, 51.5 and 50.7, 44.4 and 44.1, 34.8 and 34.3, 28.6. (Two peaks in ¹³C NMR in pyrrolidine ring due to the restricted rotation around amide bond).

Reference

1. E. Gizis and L. M. Meyer, *Nature*, 1968, **217**, 272-274.