Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Bioinspired spiky-like double yolk-shell structured TiO₂@ZnIn₂S₄ for efficient photocatalytic CO₂ reduction

Ping She^{a,b}, Buyuan Guan ^{a,b}, Jiyao Sheng ^{a,b}, Yuanyuan Qi^a, Guanyu Qiao^a, Hongbang Rui^a, Geyu Lu^c, Jun-sheng Qin*^{a,b}, Heng Rao* ^{a,b}

- *Corresponding author email: qin@jlu.edu.cn, rao@jlu.edu.cn,
- ^a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
- ^b International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
- ^c State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.

Keywords: bioinspired; double yolk-shell; photocatalytic CO₂ reduction; titanium dioxide; ZnIn₂S₄

The flat band potential of semiconductor film in a liquid junction can be estimated from the Mott–Schottky equation 1:

$$\frac{1}{C_{SC}^{2}} = (2/e\varepsilon\varepsilon_{0}N_{D})(E - E_{fb} - kT/e)$$
 equation 1

where Csc is the space charge capacitance in F cm⁻²; e is the electronic charge in C; ϵ is the dielectric constant of the semiconductor; ϵ_0 is the permittivity of free space; N_D is the carrier density in cm⁻³; E is the applied potential in V; E_{fb} is the flat band potential in V; k is the Boltzmann constant; and T represents the temperature in K. The temperature related term (kT/e) in eq 1 is negligible, 0.0257, at room temperature. The flat band potential is obtained from the x-intercept of the tangent line of the Mott–Schottky curve on potential axis (vs. Ag/AgCl). According to the equation that E (NHE) = E (Ag/AgCl) + 0.197 V, the flat band potentials (VS. NHE) of the obtained materials were calculated to be E (Ag/AgCl) plus 0.197 V. In this way, the flat band potential of the prepared materials was determined.

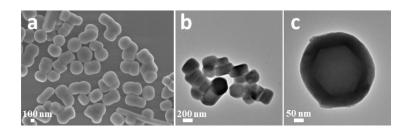
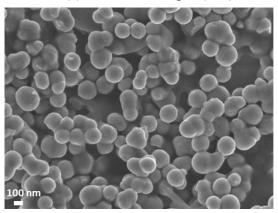



Figure S1. SEM (a) and TEM images (b, c) of S1@TiO₂

Figure S2. SEM of TiO₂ NPs

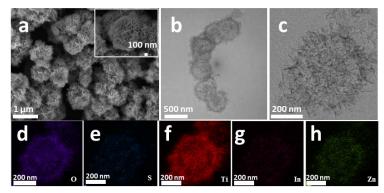


Figure S3. SEM (a), TEM (b, c) and EDS mapping images (d-h) of D-Y-TiO₂@ZnIn₂S₄-1

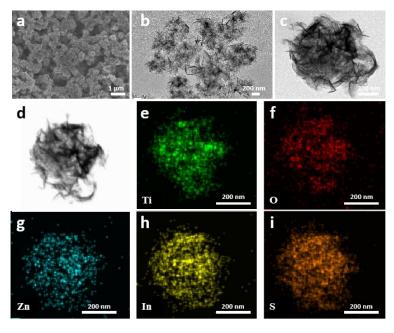


Figure S4. SEM (a),TEM (b, c) and EDS mapping images (d-i) of D-Y- $TiO_2@ZnIn_2S_4$ -2

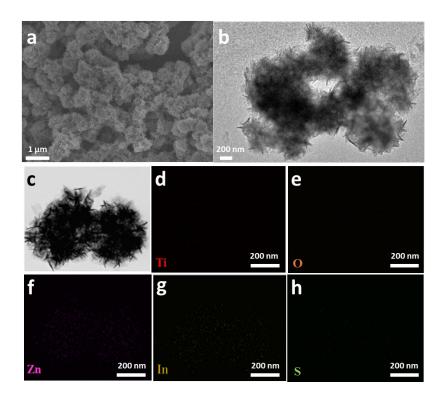


Figure S5. SEM (a), TEM (b, c) and EDS mapping images (d-h) of D-Y- $TiO_2@ZnIn_2S_4\text{-}4$

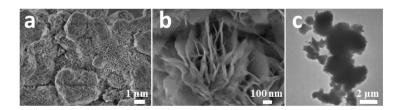


Figure S6. SEM (a, b) and TEM images (c) of ZnIn₂S₄ only

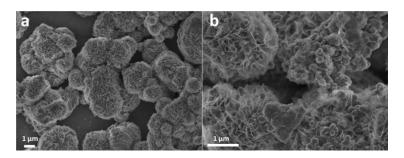
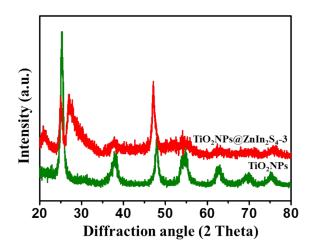
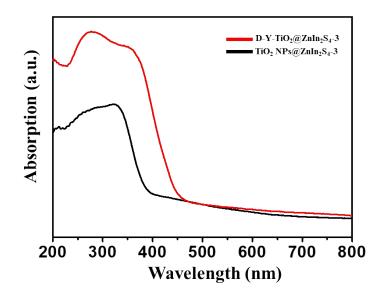
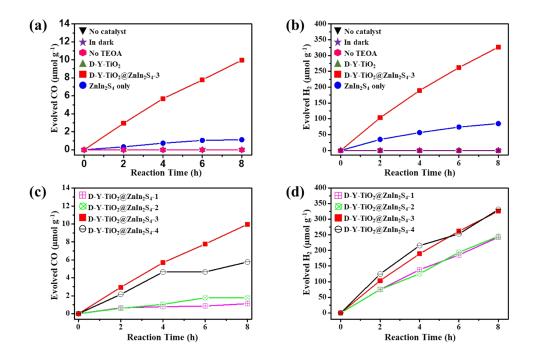
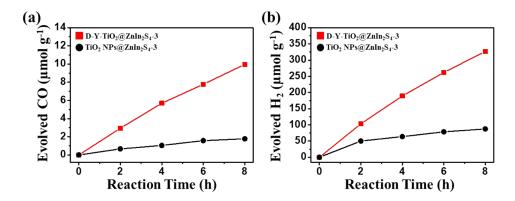
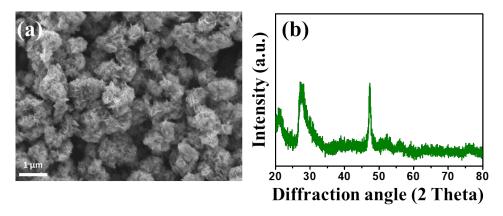
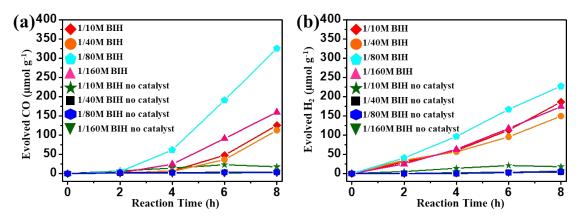



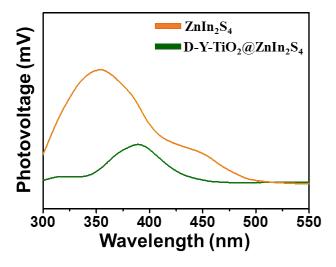
Figure S7. SEM images of TiO₂ NPs@ZnIn₂S₄-3, (b) is the enlarged image of (a).

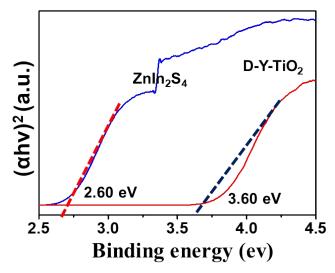
Figure S8. XRD of TiO₂ NPs and TiO₂ NPs@ZnIn₂S₄-3.


Figure S9. UV-Vis spectra of D-Y-TiO $_2$ @ZnIn $_2$ S $_4$ -3 and TiO $_2$ NPs@ZnIn $_2$ S $_4$ -3.


Figure S10. PCR of different samples under LED irradiation (λ =420 nm). Amounts of CO (a, c) and H₂ (b, d) generation of D-Y-TiO₂, ZnIn₂S₄ only, and D-Y-TiO₂@ZnIn₂S₄ with different loading amount of ZnIn₂S₄.


Figure S11. CO₂ photocatalytic reduction of D-Y-TiO₂@ZnIn₂S₄-3 and TiO₂ NPs@ZnIn₂S₄-3 under LED irradiation (λ =420 nm). (a) Amounts of CO generation; (b) Amounts of H₂ generation.


Figure S12. SEM (a) and XRD (b) of D-Y-TiO₂@ZnIn₂S₄-3 after the photocatalytic reaction.

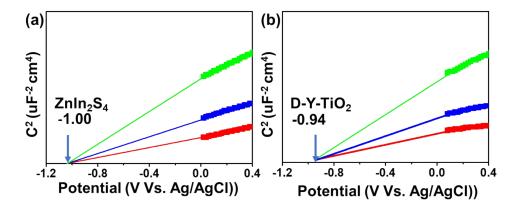

Figure S13. Time courses of CO (a) and H_2 (b) generation of D-Y-TiO₂@ZnIn₂S₄ with various sacrificial reagents.

Figure S14. The surface photovoltage of ZnIn₂S₄ and D-Y-TiO₂@ZnIn₂S₄.

Figure S15. Tauc plots of $(\alpha hv)^2$ vs photon energy of $ZnIn_2S_4$ and D-Y-TiO₂ corresponding to the UV-vis spectra in Figure 4b.

Figure S16. Mott–Schottky plots of ZnIn₂S₄ and D-Y-TiO₂.

Table S1.	The detailed	parameters for P	'L decay	y lifetime.
-----------	--------------	------------------	----------	-------------

T total =t1*R1+t2*R2 (ns)	t1 (ns)	t1 (ns)	R 1 (%)	R 2 (%)
D-Y-TiO ₂ @ZnIn ₂ S ₄ -3 (7.9)	0.57	2.15	85.98	14.02
$ZnIn_2S_4$ (2.0)	0.04	1.99	91.98	8.02

Reference

1. N. Wang, Q.M. Sun, R.S. Bai, X. Li, G.Q. Guo, J.H. Yu, In Situ Confinement of Ultrasmall Pd Clusters within Nanosized Silicalite-1 Zeolite for Highly Efficient Catalysis of Hydrogen Generation, J Am Chem Soc, 138 (2016) 7484-7487.