Supporting Information

Regulating surface state of ZnIn₂S₄ by gamma-ray irradiation for enhanced photocatalytic hydrogen evolution

Siyu Wang^a, Peng Li^a*, Lei Sheng^a, Lizhu Song^b, Rui Zang^a, Wei Zhou^c, Lequan Liu^b, Shuaishuai Liu^a

^a Department of Applied Chemistry, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, Jiangsu Province, P. R. China
^b TU-NIMS Joint Research Center, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, P. R. China
^c Department of Physics, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China

Calculation methods

The ZnIn₂S₄ models with/without γ -ray irradiation were simulated by constructed with a 3×3×1 supercell with a 15 Å vacuum layer. The S vacancy in ZnIn₂S₄ with γ -ray irradiation was simulated by remove a surface S atom on Zn side. All first-principle calculations were performed within Vienna abinitio Simulation Package (VASP), while the projector augmented wave (PAW) method [1] and generalized gradient approximation (GGA) functional of Perdew, Burke, and Enzerhof (PBE) were employed in the all calculations [2]. The interactions between adsorbent and ZnIn₂S₄ were treated by the semi-empirical London dispersion corrections of D-3 corrections of Grimme et al [3]. The cut-off for all calculations were set as 400 eV in all the calculation, the SCF tolerance level was as 1.0×10^{-6} eV in geometry optimization, while SCF tolerance was set as 1.0×10^{-8} eV for energy calculation. The K points were set as $4 \times 4 \times 1$ and $6 \times 6 \times 2$ in geometry optimizations and single point calculations, respectively. The free energy of the adsorbed state is calculated as follows based on the adsorption energy

$$\Delta G = \Delta E_{ad} + \Delta E_{ZPE} - T\Delta S$$

where ΔE_{ad} is the adsorption energy, and Δ_{EZPE} is the difference corresponding to the zero point energy between the adsorbed state and the gas phase. [4]

Fig. S1 SEM images of the as-synthesized $Znln_2S_4$ before and after γ -ray irradiation: (a) ZIS, (b) ZIS-10, (c) ZIS-20, (d) ZIS-30, (e) ZIS-40, (f) ZIS-50.

Fig. S2 The SEM image and the corresponding elemental mapping images of S, Zn and In of the assynthesized $Znln_2S_4$.

Fig. S3 Isothermal curve (a) and the corresponding pore size distribution (b) of ZIS; isothermal curve (c) and the corresponding pore size distribution (d) of ZIS-40.

Fig. S4 Photocatalytic H_2 evolution rate over the as-prepared $ZnIn_2S_4$ samples,

Fig. S8 Calculation models of ZIS (a) and ZIS-V $_{S}$ (b).

Fig. S9 The adsorption models of $H_2O(a)$ and H(b) on ZIS surface.

Fig. S10 Charge density difference between ZIS-V $_{\rm S}$ and ZIS-V $_{\rm S}$.

 Table S1 Band gaps of the as-synthesized samples observed from Tauc plots

Samples	ZIS	ZIS-10	ZIS-20	ZIS-30	ZIS-40	ZIS-50
Band gaps	2.11	2.07	2.06	2.04	2.01	2.08

Table S2 H ₂ evolution performance and apparent quantum of ZIS and ZIS-40 compared with
reported ZnIn ₂ S ₄

Materials	Condition	H ₂ evolution rate	Apparent quantum efficiency	Ref.
ZnIn ₂ S ₄	5 mg of the photocatalyst, 300 W Xe lamp ($\lambda > 420$ nm) without any cocatalysts.12.0 μ mol h-1		~0.16% at 420 nm	5
N doped ZnIn ₂ S ₄	20 mg of the photocatalyst, 300 WXe lamp ($\lambda > 400$ nm) without any cocatalysts.221.7 µmol h-1		about 17% at 420 nm	6
ZnIn ₂ S ₄	20 mg of the photocatalyst, 300 W Xe lamp ($\lambda > 400$ nm) without any cocatalysts.	13.478 μmol h ⁻¹	~53.68% at 365 nm	7
Hydrogenated ZnIn ₂ S ₄	200 mg of the photocatalyst, 300 W Xe lamp ($\lambda > 420$ nm) Pt cocatalyst (0.5 wt%)	381.0 μmol h-1		8
ZnS/ZnIn ₂ S ₄	50 mg of the photocatalyst, 300 W Xe lamp with AM 1.5 filter, without any cocatalysts.	22.6 μmol h ⁻¹		9
MWCNTs/ZnI n ₂ S ₄	100 mg of the photocatalyst, 300 W Xe lamp ($\lambda > 420$ nm) without any cocatalysts.	68.4 μmol h ⁻¹	~23.3% at 420 nm	10
ZnIn ₂ S ₄	100 mg of the photocatalyst, 300 W Xe lamp ($\lambda > 400$ nm) without any cocatalysts.	e photocatalyst, 300 W > 400 nm) without any 13.4 μmol h ⁻¹ 14.6% at 440 nm		This work
ZnIn ₂ S ₄ with 40 kGy γ-ray irradiation	100 mg of the photocatalyst, 300 W Xe lamp ($\lambda > 400$ nm) without any cocatalysts.	154.2 μmol h ⁻¹	69.3% at 400 nm 49.0% at 440 nm	This work

Samples	B ₁	T ₁ /ns	B ₂	T ₂ /ns	T/ns
ZIS	1.018345009	48.32527238	3180.928543	5.804645378	5.917672674
ZIS-10	1.734497724	105.2214206	3187.235762	6.52940568	7.387391269
ZIS-20	2767.953771	7.04142596	1.564307707	77.10031095	7.47229263
ZIS-30	1.593868913	112.2975278	3417.606422	7.764480669	8.464842423
ZIS-40	3462.677285	9.443372858	1.293106465	114.7446454	9.91903104
ZIS-50	1.335326429	99.85755348	3187.594636	6.50715211	7.103428418

Table S3 Fluorescence lifetime of the as-synthesized samples

Table S4 Elemental contents of ZIS and ZIS-40 measured by XPS

Samples	S content	In	Zn content	S/Zn
ZIS	55.01	30.75	14.24	3.86:2.16:1
ZIS-40	51.55	33.02	15.43	3.34:2.14:1

Reference

[1] Blöchl, P. E. Phys. Rev. B 1994, 50, 17953.

[2] Perdew, J. P.; W. Yue, Phys. Rev. B 1986, 33, 8800.

[3] Grimme, S. J. Comput. Chem. 2006, 27, 1787.

[4] Nørskov, J. K. Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming U. *J. Electrochem. Soc.* 2005, 152, J23–J26.

[5] Jing, X.; Lu, N.; Huang, J.; Zhang, P.; Zhang, Z. J. Energy Chem. 2021, 58, 397-407.

[6] Du, C.; Yan, B.; Lin, Z.; Yang, G. J. Mater. Chem. A 2020, 8, 207-217.

[7] Du, C.; Zhang, Q.; Lin, Z.; Yan, B.; Xia, C.; Yang, G. Appl. Catal. B: Environ. 2019, 248, 193-201.

[8] Wang, Y.; Chen, D.; Qin, L.; Liang, J.; Huang, Y. Phys. Chem. Chem. Phys. 2019, 21, 25484-25494.

[9] Song, H.; Wang, N.; Meng, H.; Han, Y.; Wu, J.; Xu, J.; Xu, Y.; Zhang, X.; Sun, T. Dalton Trans. 2020, 49, 10816-10823.

[10] Chai, B.; Peng, T.; Zeng, P.; Zhang, X. Dalton Trans. 2012, 41, 1179-1186.