Supporting information

The role of Ni sites located in mesopores for the selectivity of anisole hydrodeoxygenation

Penghui Yan¹, Xinxin Tian², Eric M. Kennedy¹, Michael Stockenhuber¹

¹ Chemical Engineering, School of Engineering, University of Newcastle, Callaghan, NSW, 2308. Australia

² Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, P. R. China

*Corresponding author: michael.stockenhuber@newcastle.edu.au

Figure S1. (**a**) N₂ adsorption-desorption isotherms and (**b**) pore size distribution of HBEA and HBEA following phenanthrene exposure; (**c**) Ar-NLDFT pore size distribution of Ni/BEA catalysts from the argon (-196 °C) isotherms.

Table S1. Acid	concentration	of support	and catalysts
----------------	---------------	------------	---------------

Catalyst	Acid concentration ((mmol/g _{cat}))
HBEA	0.84
Ni/BEA-IWI	0.60
Ni/BEA-OR-PH	0.78
Ni/BEA-DP	0.52

The acid concentrations of reduced catalysts in the range of 150~500 °C were determined by quantifying the desorbed NH_3 with NH_3 -TPD.

Figure S2. Second derivative XPS profiles of Ni/BEA catalysts

Figure S3. Second derivative H₂-TPD profiles of pre-reduced Ni/BEA-DP, Ni/BEA-OR-PH and Ni/BEA-IWI catalysts

Table S2. Peak area of low-temperature and high-temperature desorbed H_2			
Catalvet	Low-temperature desorbed H.	high-temperature desorbed H	

Catalyst	Low-temperature desorbed H ₂	high-temperature desorbed H ₂
Ni/BEA-IWI	7.66	106.0
Ni/BEA-OR-PH	12.6	231.2
Ni/BEA-DP	14.2	123.4

Figure S4. Relationship of low-temperature desorbed H₂ and Ni-H vibrations

Time (min)	X- _{anisole} (%)	Y- _{methylansiole} (%)	Y- _{phenol} (%)	Y- _{cresol} (%)	Y- _{guaiacol} (%)	Y- _{1,2-dimethoxy-} benezene (%)
0~20	21.1	8.6	6.1	2.6	1.8	1.3
20~40	16.8	6.2	4.8	1.6	3.2	0.6
40~60	12.8	5.1	2.9	0.5	3.2	0

Table S3. HDO of anisole over HBEA

[a] Reaction conditions: WHSV= 2.8 min⁻¹, $P(H_2) = 4.0$ MPa, H_2 flow rate=120 mL/min, T=230 °C.

Adsorption	Desorbed anisole	Desorbed	T _{max-}	ΔE_{des}	T _{max-}	ΔE_{des}
T (°C)	(a.u)	phenol (a.u.)	_{anisole} a (K)	_{anisole} ^b (kJ	phenol ^a	anisole ^b
				mol⁻¹)	(K)	(kJ
						mol ⁻¹)
150	2.23	5.43	615	155	632	160
230	0.75	4.06	619	156	626	158
Peak area	66%	25%	-	-	-	-
loss (%)						

Table S4. TPD of phenol and anisole

^a Temperature at peak maxima of desorption from TPD of anisole and phenol; ^b Heat of

$$\frac{\Delta E_{des}}{RT_{max}} = ln \frac{\upsilon 1T_{max}}{\beta} 2.6$$

desorption according to Redhead [1], RT_{max} β -3.64, v₁=10¹³ s⁻¹

Reference

[1] Redhead, P. A. Thermal Desorption of Gases, *Vacuum*, **1962**,12, 203-211.