Supporting Information

Xinxin Zhang,^a Jiajun Dai,^a Jiageng Ding,^a Kok Bing Tan,^a Guowu Zhan,^b Jiale Huang,^{a*} and Qingbiao Li^{a,c}

^aDepartment of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China

^bCollege of Chemical Engineering, Huaqiao University, Xiamen 361021, P. R. China

^cCollege of Food and Biology Engineering, Jimei University, Xiamen 361021, P. R. China

*Corresponding author, E-mail address: cola@xmu.edu.cn (J. Huang).

This file includes: Figures.S1 to S12 Scheme S1 Table.S1 to S3 References

1. Figures. S1 to S12

Figure S1. schematic illustrations of (a) La_2CuO_4 , (b) $LaMn_{0.25}Cu_{0.75}O_3$, (c) $LaMn_{0.5}Cu_{0.5}O_3$, (d) $LaMn_{0.75}Cu_{0.25}O_3$, (e) $LaMnO_3$

Figure S2. XRD patterns of as-prepared LaMn_{0.5}Cu_{0.5}O₃ sample and spent-

LaMn_{0.5}Cu_{0.5}O₃ sample

Figure S3. N_2 adsorption/desorption isotherms of La_2CuO_4 , $LaMn_{0.5}Cu_{0.5}O_3$ and

LaMnO₃.

Figure S4. SEM images of spent $LaMn_xCu_{1-x}O_3$ samples (from left to right x = 1, 0.5,

0)

Figure S5. TEM images of spent $LaMn_xCu_{1-x}O_3$ samples (from left to right x = 0, 0.5)

Figure S6. Products (PO: propylene oxide, AC: acrolein, AT: acetone) selectivity and propylene conversion over $LaMn_{0.75}Cu_{0.25}O_3$ and $LaMn_{0.25}Cu_{0.75}O_3$ in DEP reaction

from 125 to 275 $^{\mathrm{o}}\mathrm{C}$

Figure S7. PO selectivity for LaCu_{0.5}Mn_{0.5}O₃, La₂CuO₄ and other DEP reaction catalysts as a function of PO formation rate.

Figure S8. Apparent activation energy of La_2CuO_4 and $LaMn_{0.5}Cu_{0.5}O_3$ calculated by Arrhenius equation.

Figure S9. Electron density difference plots for $LaMn_xCu_{1-x}O_3$ (x = 0, 0.25, 0.75, 1)

samples

Figure S10. Density of states (DOS) plots for $LaMn_xCu_{1-x}O_3$ (x = 0, 0.25, 0.75, 1)

Figure S11. Charge-transfer energy schematic diagram of perovskite type oxides.

Figure S12. The EPR spectra of $LaMn_{0.5}Cu_{0.5}O_3$ sample tested at room temperature

2. Scheme S1

Scheme S1. Possible reaction model of the direct epoxidation of propylene with molecular oxygen over La₂CuO₄ sample

As represented in Scheme S1, O_2 was adsorbed and activated in the electronegative oxygen vacancies over La₂CuO₄ sample forming $O_2^{2^-}/O^-$, then reacted with propylene adsorbed on the surface of the metal cation at the B position. After desorption of the formed products, the oxygen vacancies sites on the perovskite oxides' surface were recovered. Based on previous studies,¹ the activation of dioxygen on oxygen vacancies not only required higher reaction temperature, but also the nucleophilicity of activated oxygen species was enhanced. Therefore, the La₂CuO₄ catalyst showed poor lowtemperature reducibility and poor selectivity for DEP reaction.

3. Table. S1 to S3

ratios ^a							
X	r(PO)	Selectivity (%)				Conversion (9/)	
	(mol·kg ⁻¹ cat. h ⁻¹)	РО	AT	AC	CO _x	Conversion (76)	
0	0	0	0	0	1	1.71	
0.25	0.08	2.6	2.1	1.2	94.1	0.21	
0.5	1.04	33.9	5.6	4.2	56.3	0.20	
0.75	0.11	3.8	8.3	2.8	85.1	0.18	
1	0.04	17.4	0	33.7	48.9	0.02	

Table S1. Catalytic performance of $LaCu_XMn_{1-X}O_3$ with different Cu/Mn molar

^aThe data in the table above are tested at 200 °C.

			-				
	temp. (°C)	r(PO)		Conversion			
Catalyst		(mol·kg ⁻ ¹ _{cat.} h ⁻¹)	РО	AT	AC	CO _x	(%)
La ₂ CuO ₄	200	0.04	17.4	0	33.7	48.9	0.02
	225	0.09	8.4	0	17.8	73.8	0.06
	250	0.33	8.5	1.4	9.2	80.9	0.24
LaCu _{0.5} Mn _{0.5} O ₃	275	0.68	1.4	2.2	4.8	91.6	0.29
	150	0.24	74.2	25.8	0	0	0.02
	175	0.41	49	12.3	10.1	28.6	0.05
	200	1.04	33.9	5.6	4.2	56.3	0.20
	225	1.01	17.0	0	9.7	73.3	0.37
	250	1.87	12.4	0.4	0.2	87.0	0.97
	275	3.04	10.4	0.6	0.8	88.2	1.82

Table S2. Catalytic performance of La_2CuO_4 and $LaCu_{0.5}Mn_{0.5}O_3$ at different

reaction temperatures

N I -	Catalant	PO sel.	Conv.	r(PO)	Temp.	Ref.
No	Catalyst	(%)	(%)	(mol·kg ⁻¹ ·h ⁻¹)	(°C)	
1	Cu/SiO ₂	53.0	0.25	0.014	225	2
2	VCe _{0.5} Cu _{0.5} -NaCl	32.6	0.26	0.165	250	3
3	K ⁺ -CuO _x /SBA-15	36.0	0.53	2.200	200	4
4	Cu/SiO ₂ -NaCl	44.0	0.16	0.187	215	5
5	RuO ₂ -CuO-NaCl-TeO ₂ -MnO _x /SiO ₂	23.1	14.55	1.258	250	6
6	CuO-TiO ₂ /SiO ₂	30.0	0.10	0.241	250	7
7	RuO ₂ -CuO-TiO ₂ /SiO ₂	7.70	15.40	8.776	250	7
8	RuO ₂ -CuO/SiO ₂	1.90	42.50	5.982	250	7
9	(KAc)–Cu/SiO ₂	19.1	0.27	2.500	325	8
10	CuO _x -SiO ₂	10.0	1.00	0.420	550	9
11	K^+ - CuO_x - SiO_2	30.0	0.48	0.580	550	9
12	Cubic-Cu ₂ O-27	83.0	0.06	0.028	110	1
13	NH ₄ Cl-RD-Cu ₂ O	51.0	0.15	0.068	200	10
14	Cu ₂ O rhombic dodecahedra	13.0	0.82	0.057	250	11
15	RuO ₂ -CuO-TeO ₂ /SiO ₂	41.0	0.37	3.500	250	12
16	RuO ₂ -CuO/SiO ₂	18.0	20.00	8.103	250	12
17	RuO ₂ -CuO-TeO ₂ /SiO ₂	47.0	0.35	4.390	250	12
18	RuO2–CuO–NaCl/SiO ₂	1.0		0.913	250	12

Table S3. Catalytic performance of previous representative Cu-basedsamples on DEP reaction.

References:

1.	W. Xiong, X. Gu, Z. Zhang, P. Chai, Y. Zang, Z. Yu, D. Li, H. Zhang, Z. Liu and W. Huang, Nat.
	Commun., 2021, 12 , 5921.

- 2. O. P. H. Vaughan, G. Kyriakou, N. Macleod, M. Tikhov and R. M. Lambert, *J. Catal.*, 2005, **236**, 401-404.
- 3. J. Lu, M. Luo, H. Lei, X. Bao and C. Li, J. Catal., 2002, **211**, 552-555.
- 4. H. Chu, L. Yang, Q. Zhang and Y. Wang, J. Catal., 2006, **241**, 225-228.

- 5. J. Lu, M. Luo and C. Li, *Chinese J. Catal.*, 2004, **25**, 327-333.
- 6. P. Phon-In, A. Seubsai, T. Chukeaw, K. Charoen, W. Donphai, P. Prapainainar, M. Chareonpanich, D. Noon, B. Zohour and S. Senkan, *Catal. Commun.*, 2016, **86**, 143-147.
- T. Chukeaw, A. Seubsai, P. Phon-In, K. Charoen, T. Witoon, W. Donphai, P. Parpainainar, M. Chareonpanich, D. Noon and B. Zohour, *RSC Adv.*, 2016, 6, 56116–56126.
- 8. W. Su, S. Wang, P. Ying, Z. Feng and C. Li, J. Catal., 2009, **268**, 165-174.
- 9. W. Zhu, Q. Zhang and Y. Wang, J. Phys. Chem. C, 2008, **112**, 7731-7734.
- 10. C. Zhan, Q. Wang, L. Zhou, X. Han, J. Chen, Y. Zheng, Y. Wang, G. Fu, Z. Xie and Z. Tian, *J. Am. Chem. Soc.*, 2020, **142**, 14134-14141.
- 11. Q. Hua, T. Cao, X. Gu, J. Lu and W. Huang, Angew. Chem. Int. Ed., 2014, **126**, 4856-4861.
- 12. A. Seubsai, C. Uppala, P. Tiencharoenwong and T. Chukeaw, *Catal. Lett.*, 2018, **148**, 586-600.