Supporting Information

Enhanced HCIO production from chloride by dual cocatalyst loaded WO3 under visible light

Rui Pang,^a Yugo Miseki,^a and Kazuhiro Sayama^{a,*}

*Corresponding Author: Fax: +81-29-861-4760; Tel: +81-29-6234. Email: k.sayama@aist.go.jp.

^aArtificial Photosynthesis Research Team, Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba West, 16-1, Onogawa, Tsukuba, Ibaraki, 305-0053, Japan.

Entry	Conditions	C _{HCIO} /μM		
1	standard conditions ^a	37.3		
2	without irradiation	0.0		
3	without photocatalyst	0.1		
4	without NaCl	0.0		
5	without O ₂ ^b	1.9		
^a Photocatalyst: Pt-Mn/WO ₃ , 100 mg; reaction solution: 0.5 M NaCl, 100 mL; O ₂ flow rate: 1 mL min ⁻¹ ; light				
source: 300 W Xe lamp with 420 nm cut-off filter; temperature: 303 K; photoirradiation time: 1 h. $^{\rm b}$ N $_{2}$ was				
bubbled in the reaction solution instead of O_2 .				

Table S1. Results of some blank tests for the photocatalytic production of HCIO under difference conditions.

Table S2. Comparison between the calculated Mn/WO_3 weight ratios and those

Calculated Mn amount (wt%) ^a	Tested Mn amount (wt%) ^b			
0.0	0.00			
0.1	0.04			
0.5	0.08			
1.0	0.11			
2.0	0.15			
5.0.	0.19			
^a The amount of Mn calculated using the amount of added Mn(NO ₁), pressure or				

measured by spectroscopy method.

 $^{\rm a}$ The amount of Mn calculated using the amount of added ${\rm Mn}({\rm NO}_3)_2$ precursor.

^b The actually detected Mn amount on the surface of Pt-Mn/WO₃.

surface, and formation rate of HClO on different Pt-Mn/WO ₃ .							
Sample	Pt amount	Mn amount	Pt/W ^c	<i>С</i> _{НСЮ} /µМ			
Sumple	(wt%)	(wt%)					
Pt-Mn/WO ₃ _one-step	0.99	0.11	0.013	36.3			
Pt-Mn/WO ₃ _two-	1.04	0.12	0.016	16.4			
step ^a							
Mn-Pt/WO ₃ _two-	0.94	0.13	0.018	13.1			
step ^b							

Table S3. The actual loading amount of Pt and Mn species, dispersion ratio of Pt on WO_3

^a Pt was loaded on WO₃ in first step during the preparation of Pt-Mn/WO₃ using two-step method.

 $^{\rm b}$ Mn was loaded on WO₃ in first step during the preparation of Pt-Mn/WO₃ using two-step method.

^c Ratio of Pt 4f peak area to W 4f peak area detected by XPS.

Table S4. The actual loading amount of Pt and Mn species, and the recycle test for production of HClO during the photocatalytic oxidation of Cl^- over Pt-Mn/WO₃ under visible light irradiation for 1 h.

Recycle test / Turn	Pt amount (wt%)	Mn amount (wt%)	<i>C</i> _{HCIO} /μM
1	0.99	0.11	37.9
2	0.94	0.08	33.8
3	0.90	0.06	29.1

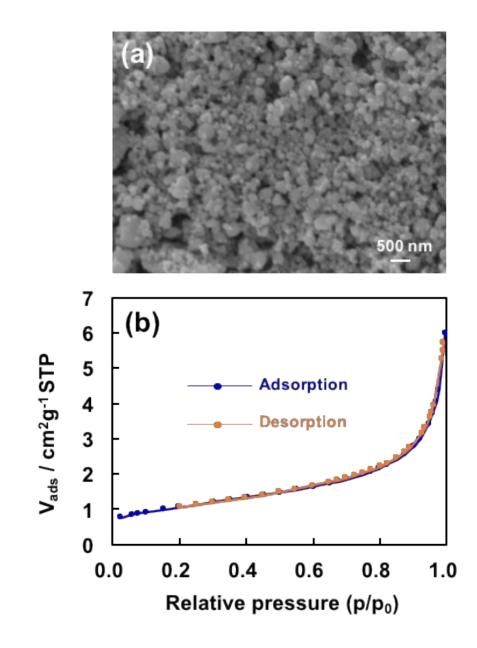
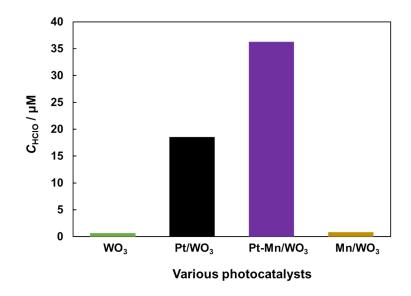



Fig. S1. SEM image (a) and N_2 adsorption/desorption isotherms and pore size distribution curves (b) of as-prepared WO₃.

Fig. S2. HClO concentration (C_{HClO}) produced by the oxidation of Cl⁻ over bare WO₃, Pt/WO₃, Pt-Mn/WO₃, and Mn/WO₃ under visible light irradiation. Photocatalyst: 100 mg; reaction solution: 0.5 M NaCl, 100 mL; O₂ flow rate: 1 mL min⁻¹; light source: 300 W Xe lamp with 420 nm cut-off filter; temperature: 303 K, photoirradiation time: 1 h.

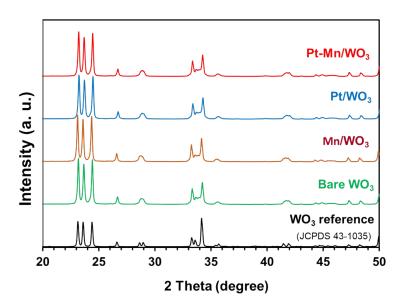


Fig. S3. XRD patterns of bare WO₃ and different cocatalyst loaded WO₃.

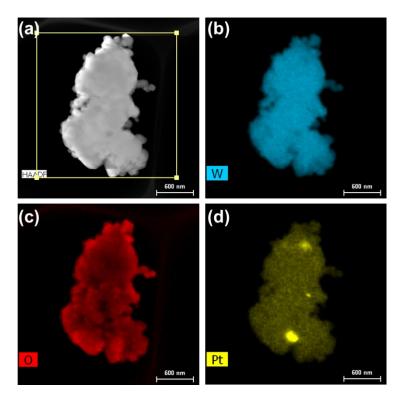


Fig. S4. (a) HAADF image and the related element mapping of (b) W, (c) O, and (d) Pt of $Pt(1.0)/WO_3$.

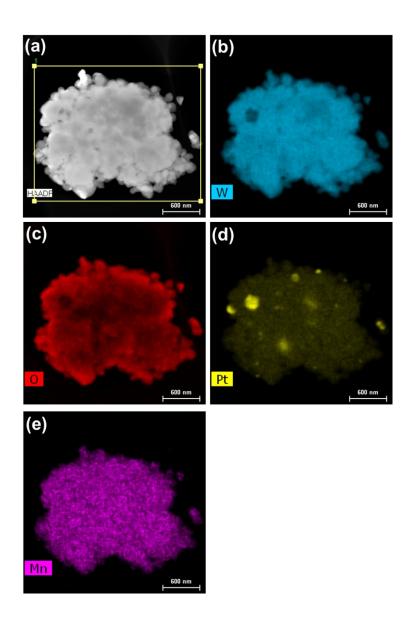
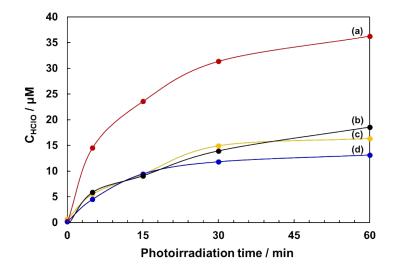



Fig. S5. (a) HAADF image and the related element mapping of (b) W, (c) O, (d) Pt, and (e) Mn of $Pt(1.0)-Mn(0.4)/WO_3$.

Fig. S6. Time course of HClO concentration (C_{HClO}) produced by the oxidation of Cl⁻ under visible light irradiation over (a) Pt(0.99)-Mn(0.12)/WO₃ prepared by one step method; (b) Pt(1.03)/WO₃; (c) Pt(0.94)-Mn(0.09)/WO₃ prepared by two step, Mn was photo-deposited in the first step; and (d) Pt(1.04)-Mn(0.12)/WO₃ prepared by two step, Pt was photo-deposited in the first step. Photocatalyst: 100 mg; reaction solution: 0.5 M NaCl, 100 mL; O₂ flow rate: 1 mL min⁻¹; light source: 300 W Xe lamp with 420 nm cut-off filter; temperature: 303 K.

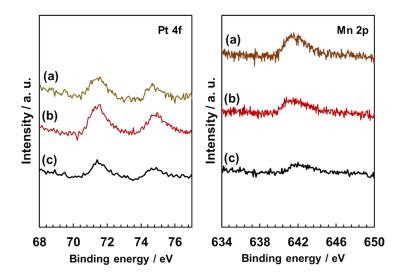
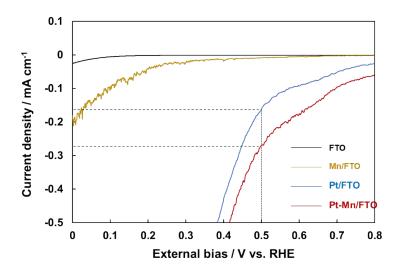
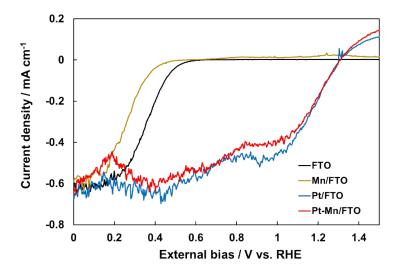




Fig. S7. Pt 4f and Mn 2p XPS spectra of (a) $Pt(1.0)-Mn(0.39)/WO_3$ prepared by two step

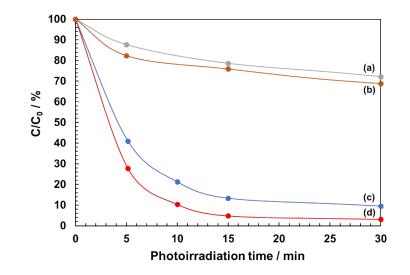

method, Pt was photo-deposited in the first step; (b) $Pt(1.0)-Mn(0.27)/WO_3$ prepared by two step, Mn was photo-deposited in the first step; (c) $Pt(1.0)-Mn(0.19)/WO_3$ prepared by one step method.

Fig. S8. Current-voltage (*I-V*) curves for ORR under O_2 flow over various metal/FTO electrodes using a three-electrode system in a 0.5 M NaCl solution (pH = 5.8).

Fig. S9. Current-voltage (*I-V*) curves for HCIO reduction reaction under N_2 flow over various metal/FTO electrodes using a three-electrode system in a 0.5 M NaCl solution. 100 μ M of HCIO was initially added in the NaCl electrolyte.

Fig. S10. Time course of the decomposition rate of H_2O_2 over (a) bare WO_3 , (b) MnO_x/WO_3 , (c) Pt/WO_3, and (d) Pt-Mn/WO_3 under the photoirradiation of visible light. Photocatalyst: 50 mg; reaction solution: phosphate buffer (pH = 6.2), 50 mL; O_2 flow rate: 1 mL min⁻¹; light source: 300 W Xe lamp with 420 nm cut-off filter; temperature: 237K, the initial concentration of H_2O_2 was about 60 μ M.

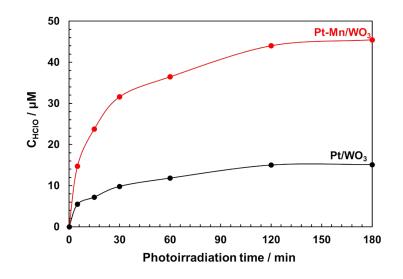
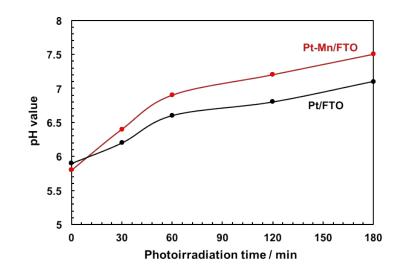



Fig. S11. Time course of HClO produced (C_{HClO}) during the photocatalytic oxidation of Cl⁻

over Pt-Mn/WO₃ and Pt/WO₃ with flowing O₂ under visible light. Photocatalyst: 100 mg; reaction solution: 0.5 M NaCl, 100 mL; O₂ flow rate: 1 mL min⁻¹; light source: 300 W xeon lamp with 420 nm cut-off filter; temperature: 303 K.

Fig. S12. The change of pH during the photocatalytic oxidation of Cl⁻ over Pt-Mn/WO₃ and Pt/WO₃ under visible light irradiation for 180 min. Photocatalyst: 100 mg; reaction solution: 0.5 M NaCl, 100 mL; O₂ flow rate: 1 mL min⁻¹; light source: 300 W xeon lamp with 420 nm cut-off filter; temperature: 303 K.