Supporting Information

Selective C₂ Alcohol Synthesis from CO₂ Hydrogenation via Reaction-Coupling Strategy

Yanqiu Wang¹, Di Xu², Xinxin Zhang¹, Xinlin Hong¹* and Guoliang Liu¹*

¹College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
²School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, P. R. China

* Corresponding authors. Email address: liugl@whu.edu.cn; hongxl@whu.edu.cn
In order to distinguish alkanes and alkenes, the chromatographic column temperature was initially set at 130 °C. When the reaction was in equilibrium, the TCD detector can record H₂, N₂, CO, CH₄, and CO₂ and the FID detector can record methanol, ethanol and C₁-C₅ hydrocarbons. Then, the chromatographic column temperature was set at 180 °C to record higher boiling point products including C₃H₇OH, C₄H₉OH and C₆-C₇ hydrocarbons.

The CO₂ conversion, products selectivity and carbon balance were calculated according to the equations 1-4 as follows:

1. CO₂ conversion was calculated according to:

$$\text{CO}_2\text{ conversion} = \frac{\text{CO}_2\text{ in} - \text{CO}_2\text{ out}}{\text{CO}_2\text{ in}} \times 100\% \quad (\text{Eq 1})$$

Where CO₂ in and CO₂ out denote the moles of CO₂ at the inlet and outlet, respectively.
(2) CO selectivity was calculated according to the following equation:

\[
\text{CO selectivity} = \frac{\text{CO}_{\text{out}}}{\text{CO}_{2 \text{ in}} - \text{CO}_{2 \text{ out}}} \times 100\% \quad \text{(Eq 2)}
\]

Where \(\text{CO}_{\text{out}} \) denotes the mole of CO at the outlet.

(3) Hydrocarbons or higher alcohols \((i)\) selectivity was calculated according to the following equation:

\[
\text{Selectivity} = \frac{N_i \times n_{i, \text{out}}}{\sum (N_i \times n_{i, \text{out}})} \times 100\% \quad \text{(Eq 3)}
\]

Where \(N_i \) and \(n_i \) represent the mole and carbon number of product \(i \).

(4) The carbon balance was calculated according to the following:

\[
\text{Carbon balance} = \frac{\text{CO}_{2 \text{ out}} + \text{CO}_{\text{out}} + \sum (N_i \times n_{i, \text{out}})}{\text{CO}_{2 \text{ in}}} \times 100\% \quad \text{(Eq 4)}
\]
Fig. S2. (a, b) Catalytic performance of CO$_2$ hydrogenation over sole 6.4KCFZ (I) and 6.4KCFZ/xCuZnZr (II: 6.4KCFZ/ZnZr, III: 6.4KCFZ/0.5CuZnZr, and IV: 6.4KCFZ/0.7CuZnZr) with mass ratio of 2/1 and powder mixing method. (a) CO$_2$ conversion, CO selectivity, and CO-free selectivity to organic products (mol %) and (b) distribution of alcohols in STY based on the mass of 6.4KCFZ catalyst and weight fraction of C$_2$OH in total alcohols; (c) CO$_2$ hydrogenation performance of xCuZnZr catalysts (i: ZnZr, ii: 0.5CuZnZr, and iii: 0.7CuZnZr) including CH$_3$OH and CO selectivity, CO$_2$ conversion and CH$_3$OH yield; (d) Correlation between C$_2$OH STY of multifunctional catalysts and CH$_3$OH plus CO yield over the corresponding xCuZnZr catalysts at 300 °C and 320 °C. Reaction conditions: catalyst mass = 0.3 g except for 0.2 g for sole 6.4KCFZ catalyst, 5 MPa, H$_2$/CO$_2$/N$_2$ = 72/24/4, and 15 mL min$^{-1}$.

In order to further study the influence of CH$_3$OH/CO produced by additional catalysts in HAS. A series of xCuZnZr catalysts were then integrated with 6.4KCFZ by powdering mixing method. ZnZr solid solution is a highly selective and stable methanol synthesis catalyst1. Introducing a small amount of Cu (0.5%, 0.7%) into ZnZr forming a ternary metal oxide solid solution can promote CH$_3$OH production in CO$_2$ hydrogenation. The promoted activity attributed to the enhancement of hydrogenation capacity from Cu and accelerated transformation of HCOO* to CH$_3$O* caused by the hydrogen spillover effect2. When adding xCuZnZr catalysts in 6.4KCFZ, the multifunctional catalyst all show improved CO$_2$ conversion and HA STY and decreased CO selectivity (a, b). And C$_2$OH fraction in alcohols doesn’t change much. It seems that compared to 320 °C, the change of HA STY is more sensitive to the amount of CH$_3$OH and CO produced from xCuZnZr at 300 °C. This result indicates the xCuZnZr catalysts affording CH$_3$O*/CO species can promote HA production kinetically.
Fig. S3. Catalytic performance of CO$_2$ hydrogenation over xKCFZ catalysts (I: 0.1KCFZ, II: 3.0KCFZ, III: 4.7KCFZ, IV: 6.4KCFZ, V: 10.7KCFZ, VI: 17.2KCFZ). (a) CO$_2$ conversion, CO selectivity, and CO-free selectivity to organic products (mol %) and (b) distribution of alcohols in STY and weight fraction of C$_2$OH in total alcohols. Reaction conditions: catalyst mass = 0.3 g, 5 MPa, H$_2$/CO$_2$/N$_2$ = 72/24/4, 300 and 320 °C, and 3 L g$_{cat}^{-1}$ h$^{-1}$.

Figure Description

(a) CO$_2$ conversion, CO selectivity, and CO-free selectivity to organic products (mol %) for different xKCFZ catalysts at 300 °C and 320 °C.

(b) Distribution of alcohols in STY and weight fraction of C$_2$OH in total alcohols for different xKCFZ catalysts at 300 °C and 320 °C.
Table S1. Comparison of HAS activity from CO₂ hydrogenation over KCFZ/CuZnAlZr multifunctional catalyst with some advanced catalysts.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>P (MPa)</th>
<th>T (ºC)</th>
<th>WHSV (L g<sub>cat</sub>⁻¹ h⁻¹)</th>
<th>CO₂ Conv. (%)</th>
<th>CO Select. (%)</th>
<th>HA Select. (%)</th>
<th>HA STY (mg g<sub>cat</sub>⁻¹ h⁻¹)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6K-CMZF</td>
<td>5</td>
<td>320</td>
<td>6</td>
<td>30.4</td>
<td>30.6</td>
<td>15.7</td>
<td>69.6</td>
<td>3</td>
</tr>
<tr>
<td>Cs-CFZ</td>
<td>5</td>
<td>330</td>
<td>4.5</td>
<td>36.6</td>
<td>20.6</td>
<td>19.8</td>
<td>73.4</td>
<td>4</td>
</tr>
<tr>
<td>CZA/K-CMZF</td>
<td>5</td>
<td>320</td>
<td>3</td>
<td>46.0</td>
<td>9.6</td>
<td>19.5</td>
<td>64.9</td>
<td>5</td>
</tr>
<tr>
<td>RhFeLi-TiO<sub>2</sub></td>
<td>3</td>
<td>250</td>
<td>6</td>
<td>15.7</td>
<td>12.5</td>
<td>31.3 (ethanol)</td>
<td>24.2 (ethanol)</td>
<td>6</td>
</tr>
<tr>
<td>Cu/Co₃O₄-2h</td>
<td>3</td>
<td>250</td>
<td>36</td>
<td>13.9</td>
<td>6.5</td>
<td>15.2 (ethanol)</td>
<td>86.0 (ethanol)</td>
<td>7</td>
</tr>
<tr>
<td>Na-Co/SiO<sub>2</sub></td>
<td>5</td>
<td>250</td>
<td>6</td>
<td>21.5</td>
<td>26.3</td>
<td>12.5 (ROH)</td>
<td>0.47 (mmol g<sub>cat</sub>⁻¹ h⁻¹)</td>
<td>8</td>
</tr>
<tr>
<td>Cu@Na-Beta</td>
<td>2.1</td>
<td>300</td>
<td>12</td>
<td>18.0</td>
<td>21</td>
<td>79.0</td>
<td>398</td>
<td>9</td>
</tr>
<tr>
<td>CZK(1.5)/CFCK(4.5)</td>
<td>6</td>
<td>350</td>
<td>5</td>
<td>32.4</td>
<td>45.3</td>
<td>11.8 (ROH)</td>
<td>72.4</td>
<td>10</td>
</tr>
<tr>
<td>NaFe@C/K/CuZnAl</td>
<td>5</td>
<td>320</td>
<td>4.5</td>
<td>39.2</td>
<td>9.4</td>
<td>31.7 (ethanol)</td>
<td>--</td>
<td>11</td>
</tr>
<tr>
<td>CuZnFe₀.₅K₀.₁₅</td>
<td>6</td>
<td>300</td>
<td>5</td>
<td>42.3</td>
<td>49.2</td>
<td>36.7 (ROH)</td>
<td>148.1 (mg mL<sub>cat</sub>⁻¹ h⁻¹)</td>
<td>12</td>
</tr>
<tr>
<td>FeNaS-0.6</td>
<td>3</td>
<td>320</td>
<td>8</td>
<td>32.0</td>
<td>20.7</td>
<td>12.8</td>
<td>78.5</td>
<td>13</td>
</tr>
<tr>
<td>Co/La₄Ga₆O₁₉</td>
<td>3.5</td>
<td>270</td>
<td>3</td>
<td>4.6</td>
<td>15.4</td>
<td>34.7</td>
<td>--</td>
<td>14</td>
</tr>
<tr>
<td>Mo₁Co₁K₀.₈</td>
<td>12</td>
<td>320</td>
<td>3</td>
<td>28.8</td>
<td>56.3</td>
<td>4.8</td>
<td>--</td>
<td>15</td>
</tr>
<tr>
<td>Mo₁Co₁K₀.₆-AC-185 %</td>
<td>5</td>
<td>320</td>
<td>3</td>
<td>8.1</td>
<td>69.8</td>
<td>4.8</td>
<td>--</td>
<td>16</td>
</tr>
<tr>
<td>4.7KCFZ/CuZnAlZr (1:1)</td>
<td>5</td>
<td>300</td>
<td>3</td>
<td>27.0</td>
<td>25.4</td>
<td>24.6</td>
<td>42.0</td>
<td>This work</td>
</tr>
</tbody>
</table>
Fig. S4. H_2-TPR results over the sole 4.7KCFZ, CuZnAlZr catalysts, and multifunctional catalysts with mortar mixing and powder mixing.
Fig. S5. Time-on-stream test of the 4.7KCFZ/CuZnAlZr (1/1-mortar mixing) multifunctional catalyst. Reaction conditions: catalyst mass = 0.3 g, 5 MPa, \(\text{H}_2/\text{CO}_2/\text{N}_2 = 72/24/4 \), 3 L g\(_{\text{cat}}^{-1}\) h\(^{-1}\), 300 °C.

Before the TOS test, the catalyst was reduced in 10% \(\text{H}_2/\text{Ar} \) flow and activated in \(\text{CO}_2/\text{H}_2 \) flow of 15 mL min\(^{-1}\) at 5 MPa and 320 °C for 3 h. And then decrease the reaction temperature to 300 °C.
Table S2. Effect of reaction pressure on the catalytic performance of CO$_2$ hydrogenation over 4.7KCFZ/CuZnAlZr (1/1-mortar mixing) multifunctional catalysta.

<table>
<thead>
<tr>
<th>Reaction pressure</th>
<th>CO$_2$ Conv. (%)</th>
<th>CO Select. (%)</th>
<th>Products selectivity (mol%)</th>
<th>C$_2$OH/ROH (wt)</th>
<th>C2OH STY (mg g${cat}^{-1}$ h$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>24.9</td>
<td>37.5</td>
<td>RHb 46.6 RHc 27.0 C$_1$OH 2.5 C$_2$OH 23.9</td>
<td>86.8</td>
<td>26.2</td>
</tr>
<tr>
<td>5</td>
<td>29.4</td>
<td>26.1</td>
<td>RHb 44.7 RHc 24.0 C$_1$OH 2.1 C$_2$OH 31.2</td>
<td>91.3</td>
<td>42.5</td>
</tr>
<tr>
<td>7</td>
<td>34.1</td>
<td>14.4</td>
<td>RHb 52.9 RHc 18.9 C$_1$OH 2.2 C$_2$OH 26.0</td>
<td>89.2</td>
<td>53.7</td>
</tr>
</tbody>
</table>

aReaction conditions: H$_2$/CO$_2$/N$_2$ = 72/24/4, 300 °C and 3 L g$_{cat}^{-1}$ h$^{-1}$.

As shown in Table S1, high pressure is beneficial to the conversion of CO$_2$ and the production of alcohols and hydrocarbons.
Fig. S6. CO$_2$/CO conversion and other products selectivity toward alkanes, alkenes, methanol, and C$_2$ alcohols of 4.7KCFZ/ CuZnAlZr (1/1-mortar mixing) multifunctional catalyst under CO$_2$/H$_2$ (I) and CO$_2$/CO/H$_2$ (I*). Reaction conditions: catalyst mass = 0.3 g, 5 MPa, 300 °C, 3 L g$^{-1}$ h$^{-1}$, H$_2$/CO$_2$/N$_2$ = 72/24/4, and H$_2$/CO$_2$/CO/N$_2$ = 72/20/4/4 (I*).

The CO$_2$ conversion and CO conversion were calculated by the following eqs 1–2

$$\text{CO}_2 \text{ conversion} = \frac{\text{CO}_2^{\text{in}} - \text{CO}_2^{\text{out}}}{\text{CO}_2^{\text{in}}} \times 100\% . \quad (1)$$

$$\text{CO conversion} = \frac{\text{CO}^{\text{in}} - \text{CO}^{\text{out}}}{\text{CO}^{\text{in}}} \times 100\% . \quad (2)$$
Fig. S7. XRD patterns of reduced 4.7KCFZ, CuZnAlZr, and 4.7KCFZ/CuZnAlZr (1/1-mortar mixing) catalysts.
Fig. S8. TEM (a) and HRTEM (b and c) images of reduced 4.7KCFZ/CuZnAlZr (1/1-mortar mixing) catalyst.
Fig. S9. TEM (a) and HRTEM (b and c) images of spent 4.7KCFZ/CuZnAlZr (1/1-mortar mixing) catalyst and the corresponding histogram of Cu particle size distribution (inset).

The Cu particle size in spent catalysts is about 4.3 nm. Compared with reduced catalyst, Cu particles did not change significantly.
Table S3. Physical properties of the sole and multifunctional catalysts obtained from N₂ desorption isotherms.

<table>
<thead>
<tr>
<th></th>
<th>(S_{\text{BET}}) (m² g⁻¹)</th>
<th>(V_m) (cm³ g⁻¹)</th>
<th>(d_{\text{pore}}) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7KCFZ</td>
<td>35.2</td>
<td>0.186</td>
<td>18.6</td>
</tr>
<tr>
<td>CuZnAlZr</td>
<td>40.9</td>
<td>0.338</td>
<td>29.3</td>
</tr>
<tr>
<td>4.7KCFZ/CuZnAlZr</td>
<td>49.1</td>
<td>0.264</td>
<td>19.9</td>
</tr>
</tbody>
</table>

Fig. S10. \(\text{CO}_2 \) conversion at 300 and 320 °C as a function of the BET surface area of the sole 4.7KCFZ, CuZnAlZr and 4.7KCFZ/CuZnAlZr (1/1-mortar mixing) multifunctional catalysts.
CO chemisorption tests were then performed to further investigate the synergetic effect between 4.7KCFZ and CuZnAlZr. Fig. S9a and 9b show the CO-TPD results over the sole catalysts and multifunctional catalysts. The signal of m/z = 28 (CO) represents the adsorption of CO on the
catalyst surface. There are two kinds of adsorption strength of CO in 100-800 °C, one is weak adsorption at about 150 °C and the other is strong adsorption at about 300-700 °C. The adsorption capacity of CO on multifunctional catalysts increases significantly than two sole components. This indicates the catalyst shows stronger CO adsorption strength with a synergy between CuZnAlZr and 4.7KCFZ. The signal of CO$_2$ (m/z = 44) can be detected due to the reaction between adsorbed CO and surface O species (Fig. S9b). The desorption temperature of CO$_2$ is the performance of CO activation ability. CuZnAlZr shows strong and high CO$_2$ desorption at high temperatures (about 584 °C) that is the reason why it has strong WGSR ability. After introducing the CuZnAlZr component, the CO activation ability in 4.7KCFZ/CuZnAlZr multifunctional catalyst is improved observably in the reaction temperature range.
Fig S12. DRIFTS spectra at the range of 2025-2217 cm$^{-1}$ over (a) KCFZ and (b) KCFZ/ZnZr catalysts in CO$_2$ + H$_2$ flow for 90 min;

Reaction conditions: 0.3 MPa, CO$_2$/H$_2$ = 1/3, 15 mL/min, 250 °C.
Fig S13. (a) In situ DRIFTS spectra during 1000-1800 cm\(^{-1}\) of surface species on KCFZ and (b) dynamic IR peak intensity change of \(\text{C}_2\text{H}_5\text{O}^*\) (1089 cm\(^{-1}\)), \(\text{HCOO}^*\) 1610 cm\(^{-1}\)).
Fig S14. (a) In situ DRIFTS spectra during 1000-1850 cm$^{-1}$ of surface species on KCFZ/ZnZr and (b) dynamic IR peak intensity change of C$_2$H$_5$O* (1085 cm$^{-1}$), HCOO* (1591 cm$^{-1}$).
References