Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting information

The reaction pathways of 5-hydroxymethylfurfural conversion in a continuous flow reactor using copper catalysts

Bao Chen¹, Xin Li¹, Peng Rui¹, Yuewen Ye¹, Tongqi Ye^{1*}, Rulong Zhou², Dongdong Li²,

James H. Carter^{3*}, Graham J. Hutchings³

1. School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P.R. China;

- 2. School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P.R. China;
- 3. Max Planck- Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK

* Correspondence: E-mail: <u>yetq@hfut.edu.cn</u>

* Correspondence: E-mail: carterj5@cf.ac.uk

Fig. S1. Post-reaction XRD of bulk CuO catalysts after reaction in various atmospheres.

Fig. S2. H₂-TPR of bulk CuO reduced and then exposed to H₂O/He at 260 °C.

Fig. S3. Time on-stream data for a) Bulk CuO, b) Cu/Al₂O₃, c) Cu/SiO₂ and d) CuZnOAlO_X.

Fig. S4. Post-reaction X-ray diffraction patterns of catalysts tested for 10 h on-stream.

Catalyst	Catalyst (mg)	HMF conc. (mmol)	T (°C)	t (h)	Gas	Solvent	Conv. (%)	DFF Sel. (%)	DFF Yield (%)	STY (mmol·g ⁻ ¹ ·h ⁻¹)	Ref.
KMn ₈ O ₁₆ ∙nH ₂O	50	1	110	1	O ₂ 5bar	DMF	100	97	97	19.4	1
5%Mn/CoOx	50	0.5	130	4	air 1bar	DMF	80	95	76	1.9	2
VOx	100	1	130	1	O ₂ 30bar	H_2O	93.7	100	94	9.4	3
Ni3Mn-LDH	200	1	100	4	O ₂ 10 mL/min	DMSO, 3ml	82.3	91	75	0.9	4
Ru/OMC- P _{0.56}	80	2	90	4	O ₂ 20bar	Toluene, 25 ml	100	88	88	5.5	5
$\begin{array}{c} Mn_{0.7}0Cu_{0.05} \\ Al_{0.25} \end{array}$	50	1	90	24	O ₂ 8bar	H ₂ O, 10ml	90	87	78	0.7	6
Ru@mPMF	50	2	105	12	$O_2 20 bar$	Toluene, 10 ml	99.6	85	85	2.8	7
Cu/MnO2	50	2	140	5	O2, 3 bar	Methanol, 15 ml	75	51	38	3.1	8
Cu	200	1	260	0.75	N ₂ 10 mL/min	H ₂ O, 10 ml	42	90	38	2.5	This work
Cu/SiO ₂	200	1	260	0.75	N ₂ 10 mL/min	H ₂ O, 10 ml	53	53	28	1.8	This work
Cu/Al ₂ O ₃	200	1	260	0.75	N ₂ 10 mL/min	H ₂ O, 10 ml	48	79	38	2.5	This work
CuZnAl	200	1	260	0.75	N ₂ 10 mL/min	H ₂ O, 10 ml	68	48	33	2.2	This work

Table S1. Summary of catalysts reported for 5-HMF to DFF.

References

- 1 J. Nie and H. Liu, J. Catal., 2014, **316**, 57–66.
- 2 S. Biswas, B. Dutta, A. Mannodi-Kanakkithodi, R. Clarke, W. Song, R. Ramprasad and S. L. Suib, *Chem. Commun.*, 2017, **53**, 11751–11754.
- 3 Y. Yan, K. Li, J. Zhao, W. Cai, Y. Yang and J. M. Lee, *Appl. Catal. B Environ.*, 2017, **207**, 358–365.
- 4 W. Zhou, Z. Kong, Z. Wu, S. Yang, Y. Wang and Y. Liu, *Catal. Commun.*, 2021, **151**, 106279.
- 5 H.-F. Ren, · Xiao Luo, · Ke Zhang, Q. Cai, C.-L. Liu and W.-S. Dong, *J. Porous Mater.*, 2020, **27**, 1003–1012.
- F. Neaţu, N. Petrea, R. Petre, V. Somoghi, M. Florea and V. I. Parvulescu, *Catal. Today*, 2016, 278, 66–73.
- 7 K. Ghosh, R. A. Molla, M. A. Iqubal, S. S. Islam and S. M. Islam, *Appl. Catal. A Gen.*, 2016, 520, 44–52.
- 8 X. Tong, Y. Sun, X. Bai and Y. Li, *RSC Adv.*, 2014, 4, 44307–44311.