Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting information

Evolution of catalytically active species in paired PdCl₂-

CuCl₂/[BMim]Cl for hydrolysis of β -1,4-glycosidic bonds

Yiwen Yang^{a, b}, Haifeng Qi^a, Zhanwei Xu^a and Z.Conrad Zhang*^{a,c}

^aState Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 (P.R. China) <u>*zczhang@yahoo.com</u> ^bUniversity of Chinese Academy of Sciences, Beijing, 100049 (P.R. China)

^cDalian Key Laboratory of Energy Biotechnology, Dalian, 116023 (P.R. China)

Table of contents

1. EPR spectra of CuCl ₂ /[BMim]Cl and PdCl ₂ -CuCl ₂ /[BMim]Cl	. 2
2. FIR spectra of [BMim]Cl and PdCl ₂ -CuCl ₂ /[BMim]Cl/saccharides	. 2
3. In situ FIR spectra of paired or single metal chlorides with addition of cellobiose	. 3
4. In situ FIR spectra of [PdCl ₄] ²⁻ in the presence of glycolaldehyde	. 4
5. In situ FIR spectra of [CuCl ₄] ²⁻ in the presence of glycolaldehyde	. 4
6. XAFS of CuCl ₂ /[BMim]Cl reduced by glycolaldehyde	. 5
7. The effect of neutralization on product yield of cellobiose conversion	. 5
8. Effect of glyoxal and glycolic acid on cellobiose conversion	6

1. EPR spectra of CuCl₂/[BMim]Cl and PdCl₂-CuCl₂/[BMim]Cl

Figure S1. Electron paramagnetic resonance spectra of CuCl₂/[BMim]Cl and PdCl₂-CuCl₂/[BMim]Cl. For each sample, [CuCl₂] = 55.6 μ mol/g[BMim]Cl. Water was at 10 wt% of [BMim]Cl. The spectra were collected under -173 °C.

2. FIR spectra of [BMim]Cl and PdCl₂-CuCl₂/[BMim]Cl/saccharides

Figure S2. FIR spectra of PdCl₂-CuCl₂/[BMim]Cl containing glucose or cellobiose at 10 wt% of [BMim]Cl under 120 °C.

3. In situ FIR spectra of paired or single metal chlorides with addition of cellobiose

Figure S3. In-situ Far infrared spectra of $[Pd^{II}Cl_4]^{2-}$ and $[Cu^{II}Cl_4]^{2-}$ with cellobiose in [BMim]Cl under 120 °C. (a) Pd^{II}–Cl stretching vibration in PdCl_2/[BMim]Cl/cellobiose; (b) Cu^{II}–Cl stretching vibration in the CuCl_2/[BMim]Cl/cellobiose; (c) Pd^{II}–Cl and Cu^{II}–Cl stretching vibration in the PdCl_2-CuCl_2/[BMim]Cl/ cellobiose system. The arrows in (a)–(c) show the decrease of the Pd^{II}–Cl or Cu^{II}–Cl coordination bond in the presence of cellobiose. The spectra at 0 min were collected immediately after the sample was dropped on the sample holder.

4. In situ FIR spectra of [PdCl₄]²⁻ in the presence of glycolaldehyde

Figure S4. *In-situ* Far infrared spectra of $[Pd^{II}Cl_4]^{2-}$ with addition of glycolaldehyde in [BMim]Cl under 120 °C. $[PdCl_2] = 111 \mu mol/g[BMim]Cl$. The loading of glycolaldehyde is 1 wt% of [BMim]Cl.

5. In situ FIR spectra of [CuCl₄]²⁻ in the presence of glycolaldehyde

Figure S5. *In-situ* Far infrared spectra of $[Cu^{II}Cl_4]^{2-}$ in the presence of glycolaldehyde in [BMim]Cl under 120 °C. The black dash-line is the FIR spectrum of CuCl₂/[BMim]Cl in the absence of glycolaldehyde. $[CuCl_2] = 55.6 \mu mol/g[BMim]Cl$. The loading of glycolaldehyde is 1 wt% of [BMim]Cl.

6. XAFS of CuCl₂/[BMim]Cl reduced by glycolaldehyde

Figure S6. The k²–weighted | $\chi(R)$ | plots derived from the Extend X-ray absorption fine structure (EXAFS) spectra for the Cu species in CuCl₂/[BMim]Cl/glycolaldehyde and CuCl/[BMim]Cl, showing the relative distribution of Cl⁻ ligands around the Cu. The Cu loading of CuCl/[BMim]Cl was 167 µmol/g[BMim]Cl; the Cu loading of CuCl₂/[BMim]Cl/glycolaldehyde was 167 µmol/g[BMim]Cl, and the molar ratio of glycolaldehyde to CuCl₂ was 1:2. The samples had been well-mixed and heated at 120 °C for 15 min.

7. The effect of neutralization on product yield of cellobiose conversion

Figure S7. The effect of NaOH neutralization on product yield of cellobiose conversion catalyzed by PdCl₂-*x*CuCl₂_G in [BMim]Cl. Reaction conditions: 505 mg PdCl₂-*x*CuCl₂_G/[BMim]Cl, 50 mg H₂O, 95 mg cellobiose, the molar amount of added NaOH was equal to Cu in PdCl₂-*x*CuCl₂_G, 120 °C, 400 rpm, 10 min.

8. Effect of glyoxal and glycolic acid on cellobiose conversion

^a Entry	Metal chloride	^b Additives	Cellobiose conversion (%)	Glucose yield (%)
1		Glycolic acid + glyoxal	0	0
2	CuCl		0	0
3	CuCl	Glycolic acid + glyoxal	5	0.2
4	PdCl ₂		10.5	5.6
5	PdCl ₂	Glycolic acid + glyoxal	7.5	5.5

Table S1 Effect of glyoxal and glycolic acid on cellobiose conversion

^{*a*}Reaction conditions: 500 mg [BMim]Cl, 47.5 mg cellobiose, 50 mg H₂O, [metal chloride] = 55.6 μmol/g[BMim]Cl, 120 °C, 400 rpm, 15 min, ^{*b*}the concentration of added glycolic acid was equal to glyoxal, 27.8 μmol/g[BMim]Cl.