Supplementary Material

Enhanced Hydrothermal Stability and SO₂-tolerance of Cu–Fe Modified

AEI Zeolite Catalysts in NH₃-SCR of NOx

Gang Sun^{1,#}, Rui Yu^{1,#}, Lulu Xu¹, Bingchun Wang², Weiping Zhang^{1,*}

¹State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China ²China Catalyst Holding Co., Ltd., Dalian 116308, China

*Corresponding author: E-mail: <u>wpzhang@dlut.edu.cn</u>

1. Characterization

The copper and iron contents in the Cu/Fe-AEI catalysts were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES, Optima 2000 DV, USA).

X-ray powder diffraction patterns (XRD) were obtained on an X-ray diffractometer (Rigaku D-Max Rotaflex, Japan) using Cu K α radiation (λ =1.5418 Å).

²⁷Al MAS NMR spectra were acquired on the Agilent DD2-500 MHz spectrometer at 130.2 MHz using a 4 mm MAS NMR probe with a spinning rate of 14 kHz. Chemical shifts were referenced to 1% Al(NO₃)₃ aqueous solution. The spectra were accumulated for 200 scans with $\pi/12$ flip angle and 2 s pulse delay.

NH₃ temperature-programmed desorption (NH₃-TPD) was carried out on a chemisorption analyzer (Finesorb-3010C, FINETEC Instruments, China). Before the measurements, the sample (50 mg) was pretreated in He stream at 400 °C and cooled down to the desired temperatures. NH₃ (500 ppm in N₂, 30 mL/min) was introduced at 100 °C for 1 h, followed by He purging for 2 h, then the temperature was ramped from 100 to 700 °C at a rate of 10 °C/min.

H₂-TPR experiments were conducted on a chemisorption analyzer (Finesorb-3010C, FINETEC Instruments, China). Typically, about 50 mg of catalyst sample was pretreated under pure argon (Ar) at 300 °C for 1 h and then cooled down to 30 °C. Then, the catalyst was heated to

700 °C at 10 °C/min in a 5% H₂/Ar at a flow rate of 50 mL/min.

The electron paramagnetic resonance (EPR) of the samples was recorded at -173 °C using a Bruker E500 spectrometer, where all the catalysts were placed in quartz tubes for the measurements.

In situ DRIFTS experiments were carried out in an environmental temperature chamber (PIKE Technologies), using a Thermo Fisher Nicolet iS10 spectrometer equipped with an MCT detector. All samples were dehydrated under a 10% O_2/N_2 flow at 300 °C for 30 min, and then cooled to room temperature. After the background spectra were collected under pure N₂, 500 ppm NO or NH₃ in N₂ was introduced. The spectra were collected in the wavenumber range of 4000–650 cm⁻¹ by accumulating 64 scans until stable. Nicolet OMNIC software was used to convert the absorbance data into Kubelka–Munk format.

The thermal gravimetric analysis (TGA) experiments were conducted using a SDT-Q600 analyzer (TA Instruments, USA). The sample (15 mg) was subjected to air at a flow rate of 100 mL/min, and the cycle was programmed with a temperature increase of 10 °C/min up to a maximum temperature of 850 °C.

UV-vis spectra were collected in the range of 190–800 nm on a JASCO V-550 spectrometer equipped with an integrating sphere coated with BaSO₄.

2. Results

Sample	The amount of ammonium sulfate		
Fe0.17-AEI	4%		
Cu0.41-AEI	7%		
Cu0.42/Fe0.16-AEI	3%		

Table S1 The amount of ammonium sulfate obtained from TG results.

Table S2 H₂-consumption of the regeneration catalysts obtained from Fig. S9.

Samples	H ₂ -consumption (μ mol/g)					
	CuO _x	Z-CuOH ⁺	Fe ³⁺ or Cu ²⁺ at 6MR	CuSO ₄	FeO _x	
Fe-AEI-Regenerated	0	0	5	0	17	
Cu-AEI-Regenerated	3	15	18	23	0	
Cu/Fe-AEI-Regenerated	10	43	44	19	19	

Fig. S1 N₂O yield as a function of temperature on various Fe-AEI catalysts: (A) fresh and (B) hydrothermally aged. Reaction conditions: 500 ppm NO, 500 ppm NH₃, 10% O₂, 5% H₂O, and N₂ balance; GHSV: 80000 h⁻¹.

Fig. S2 NO conversion (A) and N₂O yield (B) as a function of temperature on Fe-AEI catalysts modified with various mental elements. Reaction conditions: 500 ppm NO, 500 ppm NH₃, 10% O₂, 5% H₂O, and N₂ balance; GHSV: 80000 h^{-1} .

Fig. S3 NO conversion as a function of temperature on catalysts prepared by different methods. Reaction conditions: 500 ppm NO, 500 ppm NH₃, 10% O₂, 5% H₂O, and N₂ balance; GHSV: 80000 h⁻¹.

Fig. S4 N₂O yield as a function of temperature on various Cu/Fe-AEI catalysts: (A) fresh and (B) hydrothermally aged. Reaction conditions: 500 ppm NO, 500 ppm NH₃, 10% O₂, 5% H₂O, and N₂ balance; GHSV: 80000 h⁻¹.

Fig. S5 EPR spectra of Fe-AEI, Cu-AEI and Cu /Fe-AEI catalysts at -173 °C: fresh (A) and hydrothermally aged (B)

Fig. S6 TG (A) and DTG (B) profiles of regenerated catalysts after sulfur resistance tests.

Fig. S7 UV-Vis spectra of Fe-AEI catalysts: fresh (A) and hydrothermally aged (B).

Fig. S8 ²⁷Al MAS NMR spectra of Fe-AEI catalysts: fresh (A) and hydrothermally aged (B).

Fig. S9 H₂-TPR profiles of the regenerated catalysts.