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S.Table 1 – Variance captured for PCA components 

Figure Description Variance 
% (PCA 1)

Variance 
% (PCA 2)

Figure 2 A All data synthetic and real 41.13 17.74
Figure 2 B Lamellar synthetic and real 32.86 20.60
Figure 2 C Hexagonal synthetic and real 53.44 11.11
Figure 3 A Real lamellar and hexagonal 43.30 13.92
Figure 3 B Synthetic lamellar and hexagonal 39.04 18.51

S.Figure 1: Scree plots for each PCA distribution. Elbow method reveals that the first 4 
components capture significant variance of the dataset with the first 2 components deemed 
reasonable for a first assessment. The first 3 components in the lamellar synthetic and real 
plot appear significant.
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S.Figure 2: Further PCA distributions for real lamellar and hexagonal patterns. No 
significant further clustering present in the first 4 components. PC1 vs PC4 shows minor 
separation by label although no significant clustering. 

S.Figure 3:Real data t-SNE distribution following a PCA dimensionality reduction.  A 
similar clustering pattern was observed as in figure 3 A. The PCA captured 89.94 % 
variance. Clustering was reduced upon changing perplexity from default (30).

Synthetic spectra modelling



Meshed electron density models were initially built in real and Fourier space to represent the 
lamellar phase (in 1D), the hexagonal phase (in 2D) and the cubic phase (in 3D). 

Lamellar phase modelling

The lamellar phase Bravais lattice can be modelled in 1 dimension using the below function (1) 
where  is the delta function, a is the lattice parameter and n is the number of points within the 𝛿

model.
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The Fourier transform of equation 1 was then calculated to produce equation 2 which represents the 
reciprocal lamellar lattice.

𝑆(𝑞𝑥) =
2𝜋
𝑎

∞

∑
𝑚 =‒ ∞

𝛿(𝑞𝑥 ‒ 𝑚
2𝜋
𝑎 ) (2)

Along with the lattice model the electron density function of the lamellar unit cell was modelled in 1 
dimension (3). The electron density function is comprised of 3 different Gaussian functions that 

represent the bilayer headgroup positions at the positions , and at in the centre of the unit cell. 
±
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Within this equation  represents the bilayer diameter,  represents the head group electron 𝐿 𝜎1

density signal and  represents the electron density signal of the terminal methyl group.𝜎2
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Once more the Fourier transform of equation 3 was calculated resulting in equation 4, the reciprocal 
lamellar unit cell electron density function.
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Inverse Hexagonal phase modelling

The inverse hexagonal phase is composed on micellar lipid cylinders that are packed hexagonally 
along the z-coordinate. This symmetry enables the inverse hexagonal phase to be modelled in 2 
dimensions. However, we can collapse the 2 dimensions into a single scattering radius by taking the 
Euclidian distance of the reciprocal lattice points (equation 5). By taking a set of reciprocal lattice 
points along the radius from the origin a 1-dimensional set of scattering points in reciprocal space is 
obtained. 

𝑆(𝑞𝑟) = (𝑠(𝑞𝑥) + 𝑠(𝑞𝑦))2 (5)

Meanwhile the electron density function for the inverse hexagonal unit cell was modelled in polar 
coordinates by two gaussian functions modelling the lipid head and tail (equation 6). Within this 
equation  represents the position of the headgroups,  represents the position of the tails while  𝑟ℎ 𝑟𝑙 𝜎ℎ

and  represent the thickness of the headgroups and tails respectively. Finally,  and  describe the 𝜎𝑙 𝐼1 𝐼2

relative intensity values of the two Gaussian functions, in this model  and 𝐼1 = 1 𝐼2 = 0.2
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The reciprocal electron density function was once again found by taking the Fourier transform of the 
above equation. This results in equation 7 where the final equation is a function of the frequency 
radius  and angle  2.𝑘 𝜓

𝐹(𝑘) =
∞

∫
0

𝜋

∫
‒ 𝜋

𝜌(𝑟,𝜃)exp [ ‒ 𝑖𝑟𝑘cos (𝜓 ‒ 𝜃)]𝑟𝑑𝑟𝑑𝜃 (7)

As equation 7 is radially symmetric ( ), the equation can be reduced to the form 𝜌(𝑟,𝜃) = 𝜌(𝑟)𝜌(𝜃)

seen in equation 8.
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Equation 8 can be simplified further through applying the zeroth-order Bessel function (equation 9) 
reducing the equation to the form seen within equation 10. 
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This final equation is the Henkel transform and can be solved numerically to give an output value for 
the reciprocal electron density.

Inverse bi-continuous cubic phase modelling

As given previously by Garstecki et al3,4, the reciprocal electron density in 3-dimensions is defined by 
the below equation: 

𝐹(𝑞) = ∫𝜌(𝑥)exp [𝑖𝑞 ∙ 𝑥]𝑑𝑥 (11)

This electron density model was then modified by decorating the surface with two gaussians or a 
Gaussian convolved with 2 Kronecker deltas instead of using a rectangular bilayer function. The 
Kronecker delta functions were of the form detailed in equation 12 Where the distance between  𝑎

and  is . The Fourier transform of this function is then given by equation 13.‒ 𝑎 𝐿
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Meanwhile the Fourier transform of the new Gaussian function (equation 14) where the standard 
deviation is  can be described by equation 15. 𝜎
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By incorporating equations 13 and 15 into the original reciprocal electron density function and 
through neglecting fluctuations and modifying the shape of the bilayer, the final reciprocal electron 
density for the inverse bicontinuous cubic phases can be modelled as indicated below (equation 16). 
Where the he surface area  is the surface area of the surface triangle along the cubic surface, the 𝑠𝑗

positions of the midplane of the triangle is , and the normal at that point is . The wave vector  is 𝑥𝑗 𝑛𝑗 𝑞

defined here with the miller indices . 
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This equation was them combined with the appropriate reciprocal inverse bicontinuous lattice 
model to produce the final intensity function.

Synthetic data generation

After producing equations to represent both the reciprocal electron density and reciprocal lattice for 
the phases modelled, model SAXS spectra were produced using equation 17. This equation gave the 
SAXS intensity  at a given wave number  and required the input of the reciprocal electron 𝐼(𝑞) 𝑞

density function (the form factor)  of a single unit cell combined with the reciprocal lattice 𝐹(𝑞)

parameter  for any given phase.𝑆(𝑞)

𝐼(𝑞) = |𝐹(𝑞) �​|2𝑆(𝑞) (17)

For the lamellar phase model SAXS spectra were produced by varying the lattice parameter  𝑎

between 40 to 104 , the bilayer diameter  from 25 to 35 , the head group signal  from 2 to 4, Å 𝐿 Å 𝜎1

and the terminal methyl signal  from 1 to 3. Each of these parameters were stepped by 10 𝜎2

increments creating 10,000 total samples of model lamellar SAXS spectra.  

For the inverse hexagonal phase model SAXS spectra were produced by varying the lattice 
parameter  from 20 to 78 , head position from  5 to 30 ,the headgroup thickness from 0.5 to 3 𝑎 Å Å

and the tail thickness from 0.5 to 5. Each of these parameters were stepped by 10, generating 
10,000 samples of model hexagonal phase SAXS spectra.

For the cubic phases SAXS spectra were produced by varying the lattice parameter  from 5 to 30 , 𝑎 Å

length of lipid from 1 to 5 ,and lipid head from 0.0001 to 0.01. Each of these parameters were Å

stepped by 10. 

To represent real SAXS spectra, a Voigt signal (equation 18) with the parameters varied randomly 
along a normal distribution with values: [0.0001,0.005) for the gaussian alpha and [0.0001,0.005) for 
the Lorenz gamma for both hexagonal and cubic phases. For the lamellar these parameter ranges 
were: [0.0001,0.001) for the gaussian alpha and [0.0001,0.005) for the Lorenz gamma respectively 
was added to the intensity peaks to model imperfect crystal scattering. Furthermore the Debye-
Waller dampening factor (equation 19) with parameters randomly ranging from [0.005, 0.02) for 
hexagonal and cubic, and [0.02,0.1) for lamellar was applied to introduce dampening of peaks 
present at high q values1. Finally, a peak representing scattering from blank polycarbonate tubes was 
added from a randomly selected real blank sample. These additions resulted in the final synthetic 
SAXS spectra.
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Pre-train Validation Loss

S.Figure 4: Validation loss vs. iteration number for Epochs 1 (left) and 2 (right) of pre-training 
on synthetic data 

SAXS prediction examples

The following figures are samples of our model predicting the lipid phase of real, experimentally 
obtained SAXS patterns – these are all screenshots of our in-house webserver in action. To aid 
visualisation, the first example has enlarged labels and tags.






