Towards automation of operando experiments: A case study in contactless conductivity measurements

P. Kraus,*E. H. Wolf, C. Prinz, G. Bellini, A. Trunschke, and R. Schlögl

Supplementary Material

Table of contents

Examples of log files:

1.	Excerpt from an <i>instrument log</i> file.	p. S2
2.	Excerpt from a VNA log file.	p. S3

Tabulated summary of the catalytic data:

- 3. Summary of the MCPT data for samples activated in C₃-oxidation, studied with the *Handbook* protocol. The full archive, including *datagrams*, *schema* files, *parameter files*, and all raw data, is available at DOI: 10.5281/zenodo.5008960 p. S4
- 4. Summary of the MCPT data for other samples studied with the *Handbook* protocol. The full archive, including *datagrams*, *schema* files, *parameter files*, and all raw data, is available at DOI: 10.5281/zenodo.5010992 p. S4
- 5. Summary of the MCPT data for samples studied with the perovskite protocol. The full archive, including *datagrams*, *schema* files, *parameter files*, and all raw data, is available at DOI: 10.5281/zenodo.4980210 p. S5

Overview of the MCPT instrument:

6.	Piping and	${\it instrumentation}$	diagram of t	he MCPT	' instrument	p. S7

7. A list of key instrument components p. S8

^{*}E-Mail: peter.kraus@curtin.edu.au

Detailed description of instrument components:

9.	Microwave cavities	p. S9
10.	Custom glassware	p. S10
11.	Temperature controller	p. S14
12.	Transmission line	p. S16

Additional supplemental files and archives in computer-readable form are available on Zenodo, see DOI: 10.5281/zenodo.5011202. An executable version of this archive is available on Binder.

c flow; T_cal	ooda ∞o⊢ooo⊣oo
cav. flush; heate	<pre>1/min; C 1/min; C 0.00;15;8;21.0 0.00;15;8;21.0 1.000;15;8;20.3 0.00;15;8;20.3 0.00;15;8;20.3 0.00;15;8;20.3 0.00;15;8;20.3 1.000;15;8;20.3 1.1000;15;8;20.3 1.1000;15;8;20.3 1.1000;15;8;20.3 3.009;15;8;20.3 3.009;15;8;20 3.000;15;8;20 3.000;15;8;20 3.009;15;8;20 3.000;15;8;21 3.0000;15;8;21 3.0000;15;8;21 3.0000;15;8;21 3.0000;15;8;21 3.0000;15;8;21 3.0000;15;8;21 3.0000;15;8;21 3.0000;15;8;21 3.0000;15;8;21 3.0000;15;8;21 3.0000;15;8;21 3.0000;15;8;21 3.0000;15;8;21 3.00000;15;8;21 3.00000;15;8;21 3.00000;15;8;21 3.00000;15;8;21 3.00000;15;8;21 3.000000000000000000000000000000000000</pre>
w low; flow high;	<pre>11 / min; m1 / min; m1 / min; 1299. 7; 1.210; 0. 1299. 7; 1.210; 0. 0; 1390. 3; 1.211; 0; 1390. 0; 1.209; 0; 1299. 7; 1.210; 0; 1299. 7; 1.210; 0; 1299. 7; 1.210; 0; 1299. 7; 1.211; 0; 1299. 7; 1.210; 0; 1299. 0; 1.211; 0; 0; 1300. 0; 1.211; 0; 0; 1300. 0; 1.211; 0; 0; 1300. 0; 1.211; 0; 0; 1300. 0; 0.65 0; 1300. 0; 1.210; 0; 1299. 7; 0.211; 0; 1299. 7; 1.211; 0; 1299. 7; 1.211; 1; 1290. 7; 1.211; 1; 1299. 7; 1.211; 1; 1290. 0; 1; 1290. 0; 1; 1200;</pre>
sat.; press.; flow	<pre>mbar; ml/min; m ; 0.00; 0.00; 0.00; 0.00; 0.00; 0.00; 8; 0.00; 0.00; 0.00; 8; 0.00; 0.00; 0.00; 8; 0.00; 0.00; 0.00; 9; 0.00; 0.00; 0.00; 10.00; 0.00; 0.00; 10.00; 0.00; 0.00; 10.00; 0.00; 0.00; 10.00; 0.00; 0.00; 148; 0.00; 0.00; 0.00; 132; 7.33; 0.00; 0.00; 132; 7.34; 0.00; 0.00; 0.00; 132; 7.34; 0.00; 0.00; 0.00; 132; 7.34; 0.00; 0.00; 0.00; 0.00; 132; 7.34; 0.00</pre>
alkane; CO/CO2;	<pre>/min; m1/min; -12;28:12;1.48; -6;28:12;1.48; -11;28:12;1.48; -11;28:12;1.48; -12;28:12;1.44; -12;28:12;1.44; -10;28:12;1.44; -17;28:12;1.44; 18; -27;28:12;1.44; 18; -27;28:12;1.44; 18; -27;28:12;1.44; 18; -27;28:12;1.44; 18; -27;28:12;1.44; 18; -27;28:12;1.44; 18; -17;28:12;1.44; 18; -27;28:12;1.44; 18; -20;28:12;1.44; 18; -16;28:12;31 18; -16;28:12;31 18; -20;28:12;33 18; -16;28:12;33 18; -20;28:12;33 18; -20;28:12;1.44; -17;28:12;1.44; -17;28:12;1.44; -17;28:12;1.44;</pre>
_cs; T_co; N2; D2;	<pre>lin; ml/min; ml/min; ml/ [1.6;0.0;18;18; 25.6;9.3;18;18;18; 27.7;11.8;18;18;18; 29.7;11.1.8;18;18;18 20.7;11.4.7;18;18;18 37.7;15.4;18;18; 37.7;15.4;18;18; 37.7;16.1;18;18; 39.7;16.1;18;18; 39.7;16.1;18;18; 252.0;48.8;18; 2552.0;48.8;18; 2552.0;48.8;18; 2552.0;48.8;18; 2552.0;48.8;18; 2552.0;48.8;18; 2552.0;48.8;18; 2552.0;48.8;18; 2552.0;48.8;18; 2552.0;48.8;18; 2552.0;48.8;19; 2552.0;48.8;19; 2552.0;48.8;19; 2552.0;48.8;19; 2552.0;48.8;19; 2552.0;48.8;19; 2552.0;48.8;19; 2552.0;48.8;19; 2552.0;48.8;19; 2552.0;48.8;19; 2552.0;48.8;19; 2552.0;48.8;19; 2552.0;48.8;19; 2552.0;48.8;18;18; 250.0;0.0;10;18;18; 0.0;0.0;18;18;18</pre>
T_fs; T_fo; T_c; T.	
<pre>>; elapsed; T_f;]</pre>	$ \begin{array}{c} 1, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
1 timestam	2 ; ; C; C; 5 2019 08 6 2019 08 7 2019 08 8 2019 08 10 2019 08 11 2019 08 11 2019 08 11 2019 08 11 2019 08 11 2019 08 12 2019 08 13 2019 08 14 2019 08 15 2019 08 16 2019 08 17 2019 08 18 2019 08 19 2019 08 2019 08 2019 2019 08 2019 08 21 2019 08 2019 28 2019 08 2019 208 28 2019 08 2019 208 28 2019 08 2019

Figure S1: Excerpt from an *instrument log* file, showing an example of start-up with a ramp reaching 252°C at 2°C/min (3-12), switch of feed from oxidative to reaction (14-23) and cooldown procedure (25-34). The header (highlighted in green) lists the cavity temperature, cavity temperature setpoint, Peltier duty cycle, N₂ flow, O₂ flow, alkane flow, CO/CO₂ flow, saturator flow, columns, which correspond to the timestamp, elapsed run time, inlet temperature, inlet temperature setpoint, heater duty cycle, inlet pressure, inlet flow (meter no. 1), inlet flow (meter no. 2), cavity flush, heater medium flow, temperature of the calibration thermocouple.

1	BW	= 10000;AVG	= 10	
2	+7.	100000E+9	-2.280313E-2	+9.412804E-1
3	+7.	100015E+9	-2.241943E-2	+9.409110E-1
4	+7.	100030E+9	-2.244101E-2	+9.406135E-1
5	+7.	100045E+9	-2.181034E-2	+9.407906E-1
6	+7.	100060E+9	-2.154459E-2	+9.396642E-1
7	+7.	100075E+9	-2.166180E-2	+9.403051E-1
8	+7.	100090E+9	-2.122021E-2	+9.408551E-1
9	+7.	100105E+9	-2.164769E-2	+9.408164E-1
10	+7.	100120E+9	-2.139573E-2	+9.404883E-1
11	+7.	100135E+9	-2.145294E-2	+9.407361E-1
12		[]		
13	+7.	399865E+9	-2.219277E-2	-9.154096E-1
14	+7.	399880E+9	-2.249969E-2	-9.151102E-1
15	+7.	399895E+9	-2.282277E-2	-9.154791E-1
16	+7.	399910E+9	-2.304419E-2	-9.154005E-1
17	+7.	399925E+9	-2.431337E-2	-9.159150E-1
18	+7.	399940E+9	-2.515590E-2	-9.163996E-1
19	+7.	399955E+9	-2.466450E-2	-9.154912E-1
20	+7.	399970E+9	-2.516757E-2	-9.149708E-1
21	+7.	399985E+9	-2.563848E-2	-9.151121E-1
22	+7.	400000E+9	-2.602740E-2	-9.156989E-1

Figure S2: Excerpt from a VNA log file. Only the header (highlighted in green) and the first and last 10 lines shown. The header lists the filter bandwidth (10000 Hz) and number of shots averaged (10). The columns correspond to the frequency f and the real and complex parts of the reflection coefficient $\Gamma(f)$.

sults of the operando MCPT investigations of transition metal oxide samples, activated in C ₃ -oxidation, using the	ptocol. Columns include the name and nominal atomic composition, sample ID, reference conductivity at 300°C,	ergy of conductivity, changes in conductivity as a function of inlet stoichiometry and residence time, activation	ss-normalized conversion, the ideality of conversion with residence time, and interpolated selectivities to CO_x and	conversion (dashes correspond to cases where X is well below or above 5%).
ble S1: Results of the o	ndbook protocol. Colu	vation energy of conc	gy of mass-normalize	1_6 at 5% conversion (c

$_{x}(5\%) \begin{vmatrix} S_{C_{3}H_{6}}(5\%) \\ [\%] \end{vmatrix} S_{C_{3}H_{6}}(5\%)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} .87(6) & 18.6(1) \\ 9.9(1) & 31.4(4) \end{array}$	8.3(1) 11.7(1)	.61(5) 30.23(4)	78(1) 15.4(2)	.09(6) 17.92(7)	.89(9) 29.49(5)	.82(5) 50.62(6)	.50(5) 57.13(5)
$\Delta X(au)/X \left[\% \right] S_{ m CO,}$	7(20) $88(15)$	$\begin{array}{c c} 90(4) & 56 \\ 75(2) & 3 \\ \end{array}$	62(4) 8	75(13) 69	59(5)	87(3) 81	87(5) 69	88(47) 48	79(10) 42
$E_A(X/m) \left[{ m kJ/mol} ight]$	16(31) 76(15)	80(2) 86(2)	62(3)	66(15)	66(6)	86(3)	86(4)	86(44)	80(11)
$\Delta\sigma(au)$ [S/ms]	$\begin{array}{c} -0.00018(6) \\ 0.0001(1) \end{array}$	-0.0042(1) 0.00076(4)	0.006(1)	0.0161(1)	-0.00062(5)	0.0021(1)	0.00007(4)	0.0017(2)	0.00042(1)
$\Delta\sigma(\phi)$ [S/m]	0.0067(7) 0.00045(5)	-0.00515(7) 0.0053(1)	-0.009(2)	0.036(2)	-0.00117(8)	0.0069(1)	0.00013(2)	0.0081(3)	0.00257(5)
$E_A(\sigma)$ [kJ/mol]	20(1) 11(2)	$9.43(4) \\ 0.07(3)$	5.21(6)	8.03(4)	11.1(5)	17.8(2)	14.73(4)	43(3)	12.7(2)
σ_r $[m S/m]$	$\begin{array}{c} 0.005(4) \\ 0.02(1) \end{array}$	0.6(2) 0.33(8)	15(4)	0.8(4)	0.03(1)	0.19(5)	0.14(4)	0.005(6)	0.021(7)
Sample ID	32082 31845	31804 31821	31836	31846	31849	31851	31850	32084	31848
Sample name	"VPP"-C3 MoO3-C3	MoVOx-C ₃ MoVTeNbOx-C ₃	$\mathrm{Sm}_{0.95}\mathrm{MnO}_3$ - C_3	$V_2O_5-C_3$	$VPP-C_3$	$VWPOx-C_3$	α -V _{0.8} W _{0.2} OPO ₄ -C ₃	$lpha$ -VOPO $_4$ -C $_3$	β -VOPO ₄ -C ₃

Table S2: Results of the operando MCPT investigations of selected samples without previous activation in C₃-oxidation, using the Handbook protocol. Columns as in Table S1.

$S_{ m C_{3H_6}(5\%)} [\%]$	8.4(1)	37.7(1)	11.47(2)	8.6(1)	22.1(2)	16.6(2)
$S_{\mathrm{CO}x}(5\%) \ [\%]$	91.5(1)	38.10(7)	88.444(8)	91.3(1)	77.4(2)	77.4(2)
$\Delta X(au)/X$	69(5)	88(10)	56(3)	62(7)	58(4)	78(4)
$\left[\frac{E_A(X/m)}{[\mathrm{kJ/mol}]} \right]$	69(3)	90(7)	61(2)	60(5)	60(5)	101(4)
$\Delta\sigma(au)$ [S/ms]	0.008(2)	0.0009(2)	0.0019(3)	-0.003(2)	0.0229(1)	0.00002(6)
$\Delta\sigma(\phi) \ [m S/m]$	0.0037(9)	0.0190(5)	-0.0021(3)	-0.0086(8)	-0.012(5)	-0.00002(3)
$E_A(\sigma)$ [kJ/mol]	-0.54(3)	0.88(6)	0.27(3)	5.30(2)	8.68(9)	18(3)
σ_r [S/m]	11(4)	0.5(2)	1.8(5)	18(6)	0.5(2)	0.017(4)
Sample ID	30649	31652	30650	30869	31034	19760
Sample name	$LaMnO_3$	MoVTeNbOx	$PrMnO_3$	$\mathrm{Sm}_{0.95}\mathrm{MnO}_3$	$ m V_2O_5$	silica gel

J.	
000	
otc	
\mathbf{pr}	
\mathbf{te}	
ški	
NC S	
erc	
d	
the	
- 60	
sin	
Ë	
es,	
lat	
an	
ng ng	
na	
ет	
iid	
ıar	
lt	
laı	
ed	
dc	
-dc	
er	
dd	
CO	
of	
ns	
10	
gat	
stig	
ves	
in	
H	
B	
ž	
0	
'nd	
era	
op(
e (
$_{\mathrm{th}}$	S
of	ble
\mathbf{ts}	Гa
sul	'n,
Re	$\frac{5}{1}$
~~	s a
$\tilde{\mathbf{v}}$	un:
ole	un
Lat	201

Sample name	Sample ID	σ_r	$E_A(\sigma)$	$\Delta\sigma(\phi)$	$\Delta\sigma(au)$	$E_A(X/m)$	$\Delta X(au)/X$	$ S_{\mathrm{CO}_x}(5\%) $	$S_{ m C_3H_6}(5\%)$
		[S/m]	[kJ/mol]	[S/m]	[S/ms]	$[\mathrm{kJ/mol}]$	[%]	[%]	[%]
$\mathrm{LaMn}_{0.60}\mathrm{Cu}_{0.40}\mathrm{O}_{3}$	31285	6(2)	10.02(8)	-0.15(1)	0.95(7)	72(3)	42(13)	79.88(4)	20.04(3)
$LaMn_{0.65}Cu_{0.35}O_{3}$	30624	1.0(3)	13.7(2)	0.023(2)	0.61(8)	79(2)	41(7)	66.6(5)	33.5(4)
$LaMn_{0.70}Cu_{0.30}O_{3}$	30659	1.9(5)	16.3(2)	0.0572(9)	0.91(7)	79(2)	50(10)		l
$LaMn_{0.75}Cu_{0.25}O_{3}$	30635	1.4(4)	18.3(2)	0.043(1)	1.08(7)	75(2)	50(10)	75.44(5)	24.45(4)
$LaMn_{0.80}Cu_{0.20}O_{3}$	31180	1.8(9)	9.71(8)	0.0100(8)	0.23(3)	81(11)	38(44)	28.9(6)	70.5(8)
$LaMn_{0.90}Cu_{0.10}O_{3}$	30867	4(1)	13.6(1)	0.066(1)	0.97(7)	78(5)	40(19)	I	I
$LaMnO_3$	30649	26(18)	5.79(8)	0.038(7)	2.6(2)	72(17)	47(68)		I
$PrMn_{0.60}Cu_{0.40}O_{3}$	31163	2(1)	6.47(6)	-0.065(3)	0.27(2)	76(14)	35(55)	71.25(8)	28.65(5)
$PrMn_{0.65}Cu_{0.35}O_{3}$	31176	2.7(8)	2.69(4)	0.020(1)	0.18(2)	73(3)	49(11)	74.1(2)	25.6(2)
$PrMn_{0.70}Cu_{0.30}O_{3}$	30934	4(1)	5.02(7)	0.014(1)	0.66(5)	82(2)	43(10)	72.95(6)	26.83(5)
$PrMn_{0.75}Cu_{0.25}O_{3}$	30637	2.6(9)	8.38(9)	0.0245(9)	0.66(5)	81(5)	34(21)	68(2)	32(2)
$PrMn_{0.80}Cu_{0.20}O_{3}$	31021	3(1)	8.10(5)	0.0131(5)	0.32(3)	71(8)	43(32)	(2)22	23(7)
$PrMn_{0.90}Cu_{0.10}O_{3}$	31070	10(3)	2.00(6)	0.014(3)	0.85(6)	65(4)	46(15)	68(2)	32(3)
$PrMnO_3$	30650	1.8(5)	11.87(9)	0.0169(5)	0.32(3)	69(2)	25(8)	78(7)	22(7)

P&ID label	P&ID position	Description	Model
FC	4B-5C	Mass flow controllers	Bronkhorst EL-FLOW Prestige [†]
\mathbf{PC}	$5\mathrm{B}$	Pressure controller	Bronkhorst EL-PRESS †
TR	$5\mathrm{C}$	Temperature controller	Eurotherm 5304, see Figs. S10 and S11
_	$5\mathrm{C}$	Heater	Serpentine III F017558, see Fig. S10
FI, Alarmbox	$4\mathrm{C}$	Flow meter	SMC PFM 725, see Fig. S10
VNA	4D	Vector network analyser	Agilent PNA-L N5320C, see Fig. S12
GC	6D	Gas chromatograph	Agilent 7890 GC ‡
_	6B-6C	Vacuum pumps	Pfeiffer HiCube 80
PI	6B	Vacuum gauge	Pfeiffer PKR 251
	6C-6E	Trace heating	Horst HSTD 200W *

Table S4: List of key electronic components

† : Controlled using the LabVIEW interface, via a FlowBus controller (E-7500) and a set of three multiport adapters for a total of 10 devices on a single bus. Note: Only 7 devices shown in Fig. S3.

 \ddagger : Equipped with two channels: 1) Plot-Molesieve (30 m length, 50 μm film thickness, 0.53 mm I.D.) into Plot-Q (30 m length, 40 μm film thickness, 0.53 mm I.D.) into a thermal conductivity detector; 2) FFAP (30 m length, 1 μm film thickness, 0.53 mm I.D.) into Plot-Q (30 m length, 40 μm film thickness, 0.53 mm I.D.) into Plot-Q (30 m length, 40 μm film thickness, 0.53 mm I.D.) into a Polyarc detector (Activated Research Company). Online gas analysis using a 250 μl sampling loop (Vici Valco, SL250CW) and multi-port valves (Vici Valco, 2×DC6WE, 1×DC10WE).

* : Regulators built in-house.

Details of the cavities

Figure S4: A schema of the cavity, glass dewar reactor assembly, coupling loop, and cooling (Peltier) elements. Not to scale.

Figure S5: A photo of MCPT cavities of various sizes, made from copper, plated with silver and gold. The disassembled cavity on the right ($h_c = 20 \text{ mm}$, $r_c = 34 \text{ mm}$) has been used throughout this work.

Details of the custom glassware and its connecting hardware

Figure S6: Complete glassware reactor assembly (Quarzglas Heinrich, Aachen). The dimensions of the reactors are shown in Fig. S7, while the dewar is shown in Fig. S8. The whole assembly is inserted into the cavity as indicated in Fig. S4.

Figure S7: Catalytic reactor, made from Ilmasil PN (Quarzglas Heinrich, Aachen).

Figure S8: Heating jacket and vacuum dewar, made from HSQ100 (Quarzglas Heinrich, Aachen). Contains an opening for the air heater as well as a flanged connection for a vacuum pump. S12

Figure S9: The connection at the inlet (top) and outlet (bottom) of the reactor, using Swagelok UltraTorr fittings.

Details of the temperature controller

Figure S10: Wiring diagram of the temperature controller unit.

Figure S11: Front (top) and rear (bottom) view of the temperature controller unit.

Transmission line details

Figure S12: The coaxial transmission line leaving the network analyzer (top) and its connection to the cavity (bottom) via a filter and a coupling loop.