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Molecular transformation SMARTS pattern
Biphenyl addition [cH:1]�[c:1](-c1ccccc1)
6-ring annelation [cH:1][cH:2]�[c:1]2C=CC=C[c:2]2
5-ring annelation [cH:1][cH:2]�[c:1]2C=CC[c:2]2
Ring contraction [r6:1]1[r6:2][cH:3][cH:4][r6:5][r6:6]�[C:1]1=[C:2][CH2:3][C:5]=[C:6]1.[C:4]
Linkage doublebond [cH:1]�[c:1](-C=C-c1ccccc1)
Linkage triplebond [cH:1]�[c:1](-C#C-c1ccccc1)
Linkage diphenylethene [cH:1]�[c:1](-C(=C)-c1ccccc1)
CH2-substitution [r5:1][CH2r5:2][r5:3]�[r5:1][C:2](=C)[r5:3]
CH2-functionalization [r:1][CH2:2][r:3]�[r:1][CH:2](-c1ccccc1[r:3])

TABLE I: SMARTs patterns for the molecular transformation operations depicted in Figure S1.

FIG. S1: Illustration of the molecular transformation operations used during the construction of the molecular
dataset.
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Symbol Electronic properties

εHNn HOMO energy of neutral state with neutral geometry
εHNc HOMO energy of cationic state with neutral geometry
εHCn HOMO energy of neutral state with cationic geometry
εHCc HOMO energy of cationic state with cationic geometry
εLNn LUMO energy of neutral state with neutral geometry
εLNc LUMO energy of cationic state with neutral geometry
εLCn LUMO energy of neutral state with cationic geometry
εLCc LUMO energy of cationic state with cationic geometry
εGNn HL GAP of neutral state with cationic geometry
εGNc HL GAP of cationic state with neutral geometry
εGCn HL GAP of neutral state with cationic geometry
εGCc HL GAP of cationic state with cationic geometry
εFNn Fermi energy of neutral state with neutral geometry
εFNc Fermi energy of cationic state with neutral geometry
εFCn Fermi energy of neutral state with cationic geometry
εFCc Fermi energy of cationic state with cationic geometry
EE

Nn Energy of neutral state with neutral geometry
EE

Nc Energy of cationic state with neutral geometry
EE

Cn Energy of neutral state with cationic geometry
EE

Cc Energy of cationic state with cationic geometry
λ1 Vertical energy difference (E0(R+) − E0(R0))
λ2 Vertical energy difference (E+(R0) − E+(R+))

TABLE II: Electronic properties.
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FIG. S2: Comparison of λ predicted with GFN1-xTB a) and GFN2-xTB b) relative to the DFT reference. c) His-
togram of root mean squared deviations (RMSD) of GFN1/GFN2-xTB geometries relative to the DFT reference.
Both plots are based on 500 randomly selected molecules from the DFT set.
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FIG. S3: Histogram of root mean squared deviations (RMSD) of GFN1-xTB geometries relative to the DFT refer-
ence with 500 randomly selected molecules from the DFT set.
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FIG. S4: Hyperparameter optimization for the smooth overlap of atomic orbitals (SOAP) based
atomic environment descriptors. We rely on the respective implementation in the DSCRIBE package, using
the default gaussian type orbital basis and with nmax = 6 and lmax = 8. Based on these converged settings, we only
optimize the cutoff rcut and gaussian width σ by grid search with training and test sets of 3000 and 1000 molecules,
respectively. Results are averaged over three training sets of random composition. The average MAE for λDFT (in
meV) is shown here for all tested combinations, arriving at a final combination of rcut = 3.5 and σ = 0.35.
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FIG. S5: The learning curve for Kmax test. The global descriptors are built by autobag method with differ-
ent Kmax from geometry-based SOAP local vectors. For each Kmax test, five GPR models are built with different
training set from our DFT data, 1000 data,which are not include in training set, are used as test set. The average
MAE (solid line) with variance (shown as shade) is shown here. The shades present prediction errors of the mean
as measured over 5 models.

FIG. S6: Correlation plots for GPR predicted λ, using a) the SOAP+autobag representation described in the
main manuscript and b) the Many-Body Tensor Representation (MBTR). Both models use structural informa-
tion only and are performed in the ∆-learning setting with 9600 training points. Shown are the results for 1000 test
molecules.
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FIG. S7: Correlation plots for predicted λ using the SOAP+autobag representation and a) GPR as described in
the main manuscript and b) the AdaBoost regressor (max depth=100, n estimators=800). Both models use struc-
tural information only and are performed in the ∆-learning setting with 9600 training points. Shown are the results
for 1000 test molecules.

FIG. S8: Distribution of λDFT for our choosen subset of 10.900 molecules.
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FIG. S9: The performance of ∆Ks models for subsets of the database containing molecules with a fixed number of
rotatable bonds (training/test:1000/500).

FIG. S10: Correlation between GFN1-xTB and B3LYP based reorganization energies.
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FIG. S11: a) Permutational feature importance for a ∆Kp model trained on 10,900 datapoints. b)The Prediction
performance of selected features for ∆Kp (training/test = 9600/1000).

FIG. S12: Analogous to Fig. 5a in the main manuscript, but including the ∆Kp model.
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FIG. S13: Analogous to Fig. 6 in the main manuscript, but including the ∆Kp model.

FIG. S14: Top 10 substructures which generated by morgan fingerprint with a bond radius in the
set {3, 4, 5}. a) The enrichment of top 10 highest enrichment of substructures. b) The kde plot of promising sub-
structures containing in training and validation sets (in 10900 λDFT data). c) 10 example molecules of 10 corre-
sponding substructures


