Supplementary Information

Self-learning Entropic Population Annealing for Interpretable Materials

Design

Jiawen Li¹, Jinzhe Zhang¹, Ryo Tamura^{*1,2,3,4}, and Koji Tsuda^{*1,3,4}

1 Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8561, Japan

2 International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

3 Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

4 RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan

Dependency on number of iterations and inverse temperatures

In SLEPA and EPA, some hyperparameters are existed. In this supplementary note, we address dependencies on number of iterations τ and the maximum inverse temperature β_{max} when the number of observations is fixed. If τ is changed, the number of particles *M* should be changed to fix the number of observations. Figure S1 shows the Hellinger distance of the residue distribution to the ground truth distribution depending on τ , *M*, and β_{max} . First, for our problems, $\beta_{max} = 10$ is the best choice for the small percentile cases. If SLEPA is used, when the number of observations is small (i.e., 1000 and 4000), the value of τ should be increased instead of *M* to obtain better results. When the number of observations is large enough as 20000, the dependency on τ and *M* is not observed for SLEPA. On the other hand, for EPA, the opposite situation is preferred, that is, *M* should be increased than τ . Thus, we confirm that $\tau = 20$ used in the main text shows relatively better results for both SLEPA and EPA. Furthermore, if the any values of τ and *M* are used, the results by SLEPA are better than those by EPA for small percentile cases when $\beta_{max} = 10$. Note that the optimum value of β_{max} strongly depends on the problem, in particular the energy value, $e(\mathbf{x})$.

Fig. S1. Hellinger distance of the residue distribution to the ground truth distribution against the qualification threshold depending on the number of observations. Dependencies on numbers of particles M and iterations τ and β_{max} are summarized when β_{min} is fixed as 0.