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1 Supporting Methods

1.1 All-atom molecular dynamics (MD) simulation

We perform all-atom molecular dynamics simulations of multi-molecule Xn-4T-Xn systems

using the GROMACS 2019.2 simulation suite.1 The AMBER99SB-ILDN forcefield2 is used

to model each π-conjugated peptide. Partial charges for each molecule were obtained using

the Restrained Electrostatic Potential (RESP) method3,4 at the B3LYP/6-31G(d) level of

theory implemented in Gaussian16.5 Each molecule is prepared with any Asp or Glu residues

within the oligopeptide wings in a fully-protonated state corresponding to the low-pH condi-

tions where self-assembly is triggered in experiment. All-atom topologies are then generated

using AnteChamber PYthon Parser InterfacE (ACPYPE)6 wrapper for ANTECHAMBER

package within the AmberTools207 tool set. Simulations are initialized by randomly placing

24 identical Xn-4T-Xn molecules in a 10×10×10 nm3 cuboidal simulation box with 3D peri-

odic boundary conditions that is subsequently solvated using the TIP3P water model.8 Each

system is then equilibrated by first removing any forces larger than 1000 kJ/mol·nm with

steepest decent energy minimization followed by short 100 ps NVT and NPT simulations

where temperature and pressure are controlled using a velocity rescaling thermostat9 at 300

K and Parerinello-Rahman barostat10 at 1 bar, respectively. Initial velocities are sampled

from a 300 K Maxwell-Boltzmann distribution and Newton’s equations of motion are nu-

merically integrated using the leapfrog algorithm with a 2 fs timestep.11 Covalent bonds

involving hydrogen atoms are constrained using the LINCS algorithm12 and a 1.0 nm cutoff

is used to smoothly shift Lennard-Jones interactions to zero. Electrostatics are treated using

particle mesh Ewald (PME)13 with an initial 0.16 nm Fourier grid spacing and a 1.0 nm real

space cutoff, with these optimized for performance during runtime. Following the steepest

descent, NVT, and NPT equilibration, 200 ns production runs are performed in the NPT

ensemble after which time we notice the measured average number of contacts, κ, and the

radius of gyration, Rg, of the π-conjugated peptide nanoaggregate are observed to plateau
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(Fig. S1). Snapshots of each production run simulation frame are extracted and saved ev-

ery 1 ps for analysis. All calculations are performed on a single NVIDIA Tesla V100 GPU

achieving speeds of ∼130 ns/day.
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Figure S1: Convergence of structural metrics for π-conjugated peptide self-assembly during
MD simulation. For six representative π-conjugated peptide systems we track the evolution
of the average number of contacts, κ, (left panels) and the radius of gyration, Rg, (right
panels) during the 200 ns MD simulation and observe κ and Rg to both plateau after ∼100-
150 ns. As the molecules self-assemble from their initial monodisperse state κ steadily
increases reflecting progressive association of π-conjugated peptides, while Rg simultaneously
decreases as the molecules collapse into their terminal nanoaggregate structure.
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1.2 Active learning framework

To effectively navigate the high-dimensional and discrete space of π-conjugated peptides we

employ a hybrid computational/experimental active learning screen to minimize the num-

ber of simulations and experiments required to discover and validate new high-performing

Xn-4T-Xn moelcules. The premise of this combined search is to leverage high-throughout

simulation data as a cheaply available low-fidelity data stream that broadly samples the de-

sign space helping to identify more- and less-promising regions to direct experimental testing

and characterization. A schematic illustration of integrated computational-experimental ac-

tive learning workflow is presented in Fig. 1.

Independent active learning loops are maintained for the computational and experi-

mental workflows that are executed asynchronously and in parallel. Each active learning

loop requires the definition of a fitness function that defines the desirability of each can-

didate molecule. Fitness measurements collected by computation and experiment are used

to train supervised regression models that serve as a surrogate predictors of the fitness of

untested candidates. Active learning proceeds by using these models to identify the next best

molecules to consider within the experimental and computational screens and define an iter-

ative cycle of prediction/measurement and data-driven model building. The computational

screening loop operates autonomously, wherein the computational predictions are used to fit

the data-driven surrogate models and power the cycle. The experimental pipeline, however,

integrates both experimental measurements and computational predictions. In doing so, the

abundant computational data is used to supplement the sparse experimental data and pro-

duce a higher accuracy surrogate model than would be available from the experimental data

stream alone. The ultimate goal of the hybrid computational/experimental screening process

is to discover and experimentally validate Xn-4T-Xn molecules with unprecedentedly large

values of λ indicative of exceptional in-register π-stacking and H-type character that is a

prerequisite for supramolecular electronic delocalization and emergent optical and electronic

functionality.
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We now proceed to present the details of the four principal steps involved in the active

learning protocol (i) definition of fitness functions, (ii) learning a smooth, low-dimensional

embedding of the molecular design space, (iii) training of surrogate sequence-property mod-

els, and (iv) Bayesian optimization selection of candidate molecules for subsequent rounds

of computational/experimental screening.

Code and data for the different components of the active learning framework is publicly

available via Zenodo at DOI:10.5281/zenodo.5048398.14 Our implementation makes use of

open source Python libraries, including: PyTorch15 version 1.5.0, CUDA version 10.1,

PyTorch Geometric16 version 1.4.3, NetworkX17 version 2.4, GPy18 version 1.9.9, and

NumPy19 version 1.18.2.

1.3 Step 1: Definition of fitness functions

To perform active learning requires defining a fitness function that is used to evaluate the

quality of a candidate molecule such that this quantity can be optimized as a function of

a continuous low-dimensional molecular representation. While the quality measures may

differ between the experimental and computational active learning pipelines, provided the

fitness function used in simulation is correlated with and can serves as a (possibly noisy)

low-fidelity proxy for the experimental fitness function, we can transfer of information from

the voluminous simulation data to the sparse and expensive-to-collect experimental data in

order to more accurately direct the experimental active learning search.

1.3.1 Computational fitness

While electronic structure calculations are the gold standard for evaluating optoelectronic

functionality in π-conjugated peptide assemblies, these calculations become prohibitively ex-

pensive at the scale of multi-molecule assemblies. To enable higher-throughput calculations

we perform all-atom classical molecular dynamics simulations to access to the requisite time

and length scales to observe self-assembly and nanoaggregate formation. From these simu-
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lations we develop a structural proxy for optoelectronic activity related to the propensity of

molecules to form pseudo-1D lineally stacked structures in simulation. To quantify the extent

of pseudo-1D nanoaggregates formation we measure both the average number of contacts per

molecule, κ, and the radius of gyration, Rg, of the molecular self-assembly in simulation. We

previously employed a similar protocol for evaluating fitness of π-conjugated peptides with

fixed-length DXXX-OPV3-XXXD oligopeptide wings from coarse-grained molecular simu-

lation where we maximized κ alone .20 In this work we consider multiple objectives where

maximizing κ supports the formation of structures with a high degree of intermolecular π-π

stacking between π-cores while simultaneously maximizing Rg encourages the formation of

more elongated structures targeting the formation of linearly arranged pseudo-1D nanoag-

gregates.

To calculate the average number of contacts per molecule from a simulation frame at

time t requires defining both a distance metric for calculating the distance between pairs of

molecules and a criterion for specifying if two molecules should be considered in contact. We

adopt the so-called “optical distance” metric that we have previously employed in measuring

asphaltene and DXXX-OPV3-XXXD aggregation20–23 that in our application calculates the

minimum distance between pairs of thiophene rings within the 4T π-cores between a pair of

molecules a and b,

dopticala,b = min
i∈core(a)

min
j∈core(b)

ri,j, (1)

where ri,j is the intermolecular distance between the center-of-mass of thiophene ring i of

the 4T core within molecule a and thiophene ring j within the 4T core of molecule b. Pairs

of molecules that satisfy the criterion dopticala,b < rcut = 0.7 nm are then considered to be

in contact, where the cutoff rcut = 0.7 nm is motivated by the previously reported mean

separation between good in-register stacks of DFAG-OPV3-GAFD π-conjugated peptides in

simulation.20,22,23 This metric ensures close contact of at least one thiophene ring between

pairs of molecules that ultimately promotes the emergence of optoelectronic functionality

via π electron overlap and electron delocalization.22–24

7



Given the definition in Eqn. 1, the instantaneous average number of contacts per molecule

κ(t) is simply calculated by enumerating all contacts based on pairwise distances for each

π-conjugated peptide molecule within the simulation frame at time t and then averaging over

all 24 molecules within the simulation box. The instantaneous radius of gyration Rg(t) is

also calculated analogously making use of the Python MDTraj trajectory analysis library.25

The scalar-valued objectives used in our computational search κ(k) and R(k)
g for a simulated

molecule k in our Xn-4T-Xn design space are subsequently calculated by time averaging,

κ(k) = κ(t; (Xn-4T-Xn)(k)), (2)

R(k)
g = Rg(t; (Xn-4T-Xn)(k)), (3)

where the over bar represents a time average over the terminal 50 ns of the 200 ns simulation.

Uncertainties quantified as standard errors in κ and Rg are estimated by block averaging the

terminal 50 ns in five contiguous 10 ns blocks. Without a priori knowledge for the correct

balance of κ and Rg within a scalar optimization the computational active learning pipeline

performs a multi-objective optimization to estimate the full κ-Rg Pareto frontier containing

all candidate Xn-4T-Xn molecules that are not strictly dominated by any other molecule in

both κ and Rg.26

1.3.2 Experimental fitness

Our goal ultimately is to discover and identify molecules within the Xn-4T-Xn design space

that self-assemble into pseudo-1D nanoaggregates possessing superior optoelectronic activity.

We experimentally quantify the quality of the self-assembled aggregates using photophysi-

cal spectroscopy. Kasha et al.27 detailed the use of UV-vis spectroscopy to determine the

types of assemblies: H-type or co-facial assembly is usually characterized by the blue-shift in

absorption maxima upon going from monomeric to assembled condition whereas J-type or

side-wise assembly is characterized by the red-shift in absorption maxima from monomeric
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to assembled state. We previously observed that Xn-4T-Xn triblock molecules show H-type

assembly with a blue-shifted UV-vis maxima upon acid-triggered assembly.28,29 Larger blue

shifts are correlated with improved intermolecular π-stacking between the 4T cores, and it is

our objective to discover peptide wing sequences that promote high H-type character within

the self-assembled nanostructures by maximizing the measured spectral shift λ. Uncertain-

ties in λ are quantified by standard errors in repeated measurements performed at varying

concentrations.

1.4 Step 2: Learning a smooth, low-dimensional embedding of the

molecular design space

Part of the challenge of inverse molecular design is addressing large molecular design spaces

that are inherently discrete and high-dimensional in nature. Deep representational learning

enables us to learn low-dimensional representations of molecules that embeds them as contin-

uous and real-valued vectors within a low-dimensional latent space. These low-dimensional

representations tend to favor the training of robust surrogate models that predict the fitness

of untested molecules based on the subset of molecules that have undergone simulations

and/or experimental characterization. Their smooth and continuous nature are naturally

suited to optimization wherein the surrogate model predictions are passed to Bayesian op-

timization routines that select batches of molecules predicted to be most promising for

the next round of computational/experimental screening. In this work we generate low-

dimensional molecular representations of our Xn-4T-Xn design space using regularized au-

toencoder (RAEs)30 as a deterministic adaptation of the popular variational autoencoder

(VAE) architecture.31

1.4.1 Representing Xn-4T-Xn molecules as linear graphs

Since all members of the Xn-4T-Xn family possess the same 4T π-core, the only differen-

tiating factor between molecules is the Xn oligopeptide wing. Accordingly, we represent
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and expose each molecule to the RAE as a linear graph of amino acids reflecting the pri-

mary structure of the Xn oligopeptide. Representing molecules as abstract graphs that

model a collection of objects (nodes) and their relations (edges) has recently been a popular

choice among practitioners applying deep learning to molecular design.32–34 By using graph-

structured data we leverage the powerful capabilities of graph neural networks to effectively

incorporate relational information between elements while naturally remaining invariant to

atomic permutations.35 Henceforth, by using a graph neural network encoder within our

RAE we can ensure to learn a latent space embedding of our Xn-4T-Xn design space that

respects permutational symmetries present in the Xn oligopeptide wing.

Each Xn-4T-Xn molecule k is represented as a linearly connected graph G(k) with (n +

1) nodes comprising the n amino acids in the Xn oligopeptide wing along with a dummy

node endowing directionality to the sequence of amino acids (e.g., differentiating DVGA-

4T-AGVD from AGVD-4T-DVGA) (Fig. S2). These (n + 1) nodes are then sequentially

connected with n edges to yield the linear graph representation. Each graph additionally

includes self-loops where another (n + 1) edges are added connecting each node to itself.

The nodes and edges of each graph are featurized using the Amino Acid Index (AAindex)

database.36 The AAindex database contains 566 scalar values related to individual amino

acid physio-chemical properties along with 141 amino acid mutation matrices and pairwise

contact potentials. A subset of 553/566 node features are assigned to each amino acid node

corresponding to the features present for all the amino acids in our design library. Similarly,

135/141 features are assigned to each edge that connects pairs of amino acids corresponding

to the values present for all amino acids pairs within the mutation matrices and pairwise

contact potentials. We discarded 13 of the single amino acid features and six pairwise

amino acid features because these descriptors were missing values for at least one amino

acid. We elect to take an unbiased approach exposing all available node and edge features

from AAindex in our representation, rather than hand-selecting a subset of features that

we believe would be relevant to our application. The dummy node is always appended to
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the beginning of the graph and is assigned a zero-padded vector as its node features (e.g.

the linear graph with the sequence dummy-A-V-G corresponds to the π-conjugated peptide

AVG-4T-GVA). All edges that connect to this dummy node are also set as zero-padded

vector. Computationally the dummy node may be interpreted as corresponding to a start

token of the sequence, while physically it can be interpreted as corresponding to the location

of the oligopeptide wing C-terminus.

Each graph-structured object is then compactly represented by three matrices G(k) =

G(N (k), A(k), E(k)) where: N (k) ∈ IR(n+1)×553 is a matrix of node features where N (k)
i cor-

responds to the node features for ith node within the graph, A(k) ∈ IR(n+1)×(n+1) is an

adjacency matrix capturing the connectivity of the nodes where A(k)
i,j = 1 indicates an edge

is present that connects node i to node j, and E(k) ∈ IR(n+1)×(n+1)×135 is the matrix of edge

features where E(k)
i,j are the features for the edge connecting node i to node j. At training

time we standardize the sizes of the node feature matrix N (k) ∈ IR6×553, the adjacency matrix

A(k) ∈ IR6×6, and the edge feature matrix E(k) ∈ IR6×6×135 for all our graph-structured data

G(k) = G(N (k), A(k), E(k)) to have the maximum possible number of rows/columns needed

to accommodate the largest possible graphs in our dataset which contain six nodes. For

graphs with less than six nodes the additionally added rows/columns in N (k), A(k) and E(k)

corresponding to non-existent nodes in the graph are padded with zeroes. We note that op-

erationally the edge feature matrix is more compactly represented as E(k) ∈ IR5×135 because

of the linear nature of our graphs. For notational convenience and generality we elect to

depict E(k) ∈ IR6×6×135 in our explication here which allows for arbitrary graph connectivity.

1.4.2 Regularized autoencoder (RAE)

The architecture of our regularized autoencoder (RAE) for embedding Xn-4T-Xn molecules

is composed of two parts: (i) an encoder that converts graph-structured representations of

moleculesG(k) into their corresponding d-dimensional latent space embedding Encoder(G(k)) =

z(k) ∈ IRd, and (ii) a decoder that attempts to reconstruct Ĝ(k) from their latent space vector
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Figure S2: Representing Xn-4T-Xn molecules as linear amino acid graphs. Each molecule in
our design space is differentiated by the Xn oligopeptide sequence attached to the 4T core.
The sequence of amino acids is converted into a linear graph where the nodes Ni are amino
acids and edges Ei,j reflect the connectivity of the amino acids. By appealing to the AAindex
database,36 each node is featurized using Ni ∈ 553 scalar single amino acid properties, while
the edges are featurized according to Ei,j ∈ 135 scalar values extracted for mutation matrices
and pairwise contact potentials corresponding to pairwise amino acid properties. A dummy
node with zero-padded node and edge features is appended to the beginning of the sequence
endowing directionality to the oligopeptide wing.

representation Decoder(z(k)) = Ĝ(k) (Fig. S3). The encoder uses a message passing neural

network (MPNN) nearly identical to that used by Glimer et al.37 for quantum mechanical

property prediction of small organic molecules, while the decoder is a partially autoregres-

sive model that first reconstructs the node features N̂ (k) from z(k) alone and subsequently

predicts the adjacency matrix Â(k) using both the reconstructed node features N̂ (k) and the
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latent code z(k). We elect not to reconstruct the edge features Ê(k) because the identity of

each molecule k in our Xn-4T-Xn design space is fully specified from the reconstructed node

features N̂ (k) and the reconstructed adjacency matrix Â(k) alone. Regardless, the encoder is

still capable of utilizing information captured in the relations defined within the edge fea-

tures E(k) when constructing the latent code z(k) that is ultimately used by the decoder in

reconstructing the node features N̂ (k) and adjacency matrix Â(k).

1.4.3 Encoder

The encoder is used to derive a d-dimensional permutation invariant continuous latent vec-

tor z(k) = Encoder(G(k)) from the graph-structured representation G(k) of each Xn-4T-Xn

molecule using a message passing neural network (MPNN) architecture introduced by Glimer

et al.37 Message passing is performed by sequentially updating the hidden state h(t+1)
i of each

node i using messages m(t+1)
i that accumulate information from the neighboring nodes,

m
(t+1)
i =

1

|N (i)|
∑
j∈N (i)

ΨΘ(Ei,j) · htj, (4)

h
(t+1)
i = GRU(m

(t+1)
i , hti), (5)

where N (i) are all the neighbors of node i and the · in Eq. 4 represents matrix multiplication.

A single dense layer Ωθ : IR553 7→ IRdh transforms the node features Ni for node i into the

initial dh-dimensional hidden state representation Ωθ(Ni) = ht=0
i ∈ IRdh . The multi-layer

perceptron (MLP) ΨΘ : IR135 7→ IRdh×dh in Eqn. 4 maps the initial edge features Ei,j to a

matrix of dimension dh × dh. A GRU cell38 is used in Eq. 5 as in the gated graph neural

network variant of message passing39 to update the hidden state of each node h(t+1)
i based on

the message m(t+1)
i propagated from the neighbors of node i. Message passing is performed

to update the hidden states of each node for a total of T = 5 steps after which point we

use the set2set model of Vinyals et al.40 to aggregate the final hidden states {hTi }i∈G(k) and
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Figure S3: Regularized autoencoder (RAE) architecture used to generate the chemical space
embedding of the Xn-4T-Xn design space. Each molecule k is exposed to the RAE as a graph
structured object G(k) = G(N (k), A(k), E(k)) defined by node features N (k), an adjacency ma-
trix A(k), and edge features E(k). A message passing neural network (MPNN) encoder is then
used to compress this high-dimensional representation into a fixed-sized real-valued vector
representation Encoder(G(k)) = z(k). The decoder then attempts to reconstruct the identity
of the input from the latent code z(k) by reconstructing the node features and adjacency
matrix Decoder(z(k)) = (N̂ (k), Â(k)), which are alone sufficient to specify the identity of the
input molecule in absence of the edge features. The RAE network is trained end-to-end
by minimizing the loss given in Eqs. 10, 11 and 12 that balances reconstruction accuracy
and regularization terms to ensure the latent space remains smooth and proximally embeds
chemically similar molecules.

readout a graph-level representation,

hG(k) = set2set({hTi }i∈G(k)). (6)
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The set2set model is an expressive global pooling operator that is invariant to the order

of the inputs and uses and iterative attention mechanism to produce a continuous feature

vector for each graph hG(k) . Finally, this representation is processed by a final MLP ΦΘ to

ultimately yield z(k) defining the latent representation within the chemical space embedding

for the molecule defined by the graph-structured representation G(k),

z(k) = ΦΘ(hG(k)). (7)

1.4.4 Decoder

The decoder attempts to reconstruct the node features N̂ (k) and adjacency matrix Â(k) from

the latent space embedding vector derived from the encoder (N̂ (k), Â(k)) = Decoder(z(k)) =

Decoder(Encoder(G(k))) using an autoregressive approach first reconstructing the node fea-

tures N̂ (k) from z(k) alone, which are then used to reconstruct the adjacency matrix Â(k)

from N̂ (k) and z(k) together. The first step in our decoding process is using an MLP

ψΘ : IRd 7→ IR6×553 that directly projects latent vectors z(k) into reconstructed node fea-

tures N̂ (k),

N̂ (k) = ψΘ(z(k)). (8)

From this reconstruction N̂ (k) we define the the function φΘ composed of MLPs that assigns

entries into each component of the reconstructed adjacency matrix Â(k)
i,j which is a function

of the predicted node features N̂ (k)
i , N̂ (k)

j , and the latent code z(k). Further, because we know

the adjacency matrix must be symmetric we construct φΘ such that the function is invariant

to the order of N̂ (k)
i and N̂ (k)

j enforcing explicitly that Â(k)
i,j = Â

(k)
j,i ,

Â
(k)
i,j = φΘ({N̂ (k)

i , N̂
(k)
j }, z(k)). (9)

The internals of the φΘ function are primarily composed of three MLPS: (i) an MLP φ
(i)
Θ :

IR553 7→ IRdn that maps reconstructed node features N̂ (k)
i into a dn-dimensional intermediate
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representation, (ii) an MLP φ
(ii)
Θ : IRd 7→ IRdz that maps the latent vector z(k) into a dz-

dimensional intermediate representation, and lastly an MLP (iii) φ(iii)
Θ : IRdn+dz 7→ IR1 that

takes as input the concatenation [
φ

(i)
Θ (N̂

(k)
i )+φ

(i)
Θ (N̂

(k)
j )

2
||φ(ii)

Θ (z(k))], where || is a concatenation

operator, and outputs a scalar value used as the entry into the reconstructed adjacency

matrix Â
(k)
i,j . The addition operation between φ

(i)
Θ (N̂

(k)
i ) and φ

(i)
Θ (N̂

(k)
j ) used as input for

φ
(iii)
Θ ensures the function φΘ remains invariant to the order of N̂ (k)

i and N̂
(k)
j and strictly

enforces that the reconstructed adjacency matrix remain symmetric Â(k)
i,j = Â

(k)
j,i . Overall, the

decoder reconstructs the node features and adjacency matrix (N̂ (k), Â(k)) = Decoder(z(k))

from the latent code z(k) extracted from the encoder which performs message passing on the

graph-structured input Encoder(G(k)) = z(k). The reconstructions (N̂ (k), Â(k)) fully specify

the identity of molecule k within the Xn-4T-Xn design space and are used to train the RAE

neural network in training procedures outlined in the next section.

1.4.5 RAE training

The primary difficulty in training encoder-decoder architectures on graph-structured data

lies in the n! valid permutations of a graph containing n nodes. While the encoder uses a

MPNN that yields a latent space embedding that is insensitive to permutations, the decoder

is incapable of reconstructing the precise input permutation because this information has

been effectively “integrated-out” of the latent code. Many techniques have been proposed

to remedy training procedures to account for this mismatch between input and output per-

mutations. Winter et al.41 train a permuter model alongside the encoder and decoder that

learns probable reordering of the output graph from the order present in the input graph.

Our approach is most similar to the GraphVAE approach by Simonovsky et al.42 where they

use approximate graph matching with soft discretization to approximate an alignment be-

tween input and output graphs when computing the reconstruction loss. Here, we perform

exact graph matching by explicitly enumerating all valid permutations of each reconstructed

graph and selecting the permutation that minimizes the reconstruction loss for each input-
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output pair. While explicit graph matching is typically prohibitively expensive for large

graphs, this approach becomes tractable in our case because the largest graph in our train-

ing dataset contains at most six nodes requiring us to consider a maximum of only 6! = 720

permutations.

The RAE is trained by minimizing the loss L composed of three terms: the reconstruction

loss LREC , the RAE loss LRAE, and the regularization loss term LREG,

LREC = argmin
π

[MSE(PπN̂
(k), N (k)) + λRECBCE(PπÂ

(k)P T
π , A

(k))]

= argmin
π

[
6∑
i=1

[
553∑
j=1

((PπN̂
(k))i,j −N (k)

i,j )2−

λREC

6∑
j=1

(A
(k)
i,j log((PπÂ

(k)P T
π )i,j) + (1− A(k)

i,j ) log(1− (PπÂ
(k)P T

π )i,j)]], (10)

LRAE =
1

2
||z(k)||22 =

1

2

d∑
i=1

(z
(k)
i )2, (11)

LREG = LL2 = ||WDecoder||22, (12)

L = LREC + λRAELRAE + λREGLREG, (13)

where {Pπ ∈ IR6×6}6!
π=1 are all valid permutation matrices of size six indexed by π. MSE(ŷ, y)

and BCE(ŷ, y) in Eq. 10 corresponds to the mean squared error and binary cross entropy

between the reconstructions ŷ and ground truth y, respectively. The hyperparameter λREC

balances the reconstruction losses between the node feature matrix N (k) and the adjacency

matrix A(k) in LREC , while λRAE and λREG controls the relative weights of the three losses

that comprise L. The RAE loss LRAE in Eq. 11 computes the squared L2-norm of the d-

dimensional latent vector outputted from the encoder z(k) = Encoder(G(k)) and serves to

restrict the size of the latent space while preventing unbounded optimization of z(k) and

stopping the network from otherwise simply memorizing the data by allocating distant la-

tent space locations to each training point. Lastly, the regularization loss LREG in Eq. 12 is

a weight decay on all the parameters of the decoder WDecoder. The purpose of this term is
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to help promote a smooth latent space embedding by enforcing the decoder have a bounded

Lipschitz constant resulting in points nearby one another in the latent space getting decoded

into similar graph structures in the output data space. We note that this type of regu-

larization enforcing a smooth embedding with a bounded Lipschitz constant is implicitly

done when training variational autoencoders (VAEs) via the injection of a noisy input to

the decoder performed during the reparameterization trick,31 but must be constituted as an

explicit component of the loss for RAE training. In Fig. S4 we qualitatively validate that our

learned latent space represents a smooth encoding of Xn-4T-Xn molecules by presenting an

example of latent space interpolation and confirming points nearby one-another in the latent

space are encoded as chemically similar structures in data space. Along with weight decay

Ghosh et al.30 outline other methods for regularizing the decoder when training RAEs such

as spectral normalization and gradient penalty, however in this work we elect to use weight

decay due to its simplicity of implementation yet comparable performance and effectiveness

compared to these other more complicated methods. Training of the RAE is performed using

mini-batch gradient descent with the Adam optimizer.43 A full list of training parameters

and neural network specifications are presented in Table S1. The particular model specifica-

tion used in this work was selected based on a hyperparameter search over the learning rate

within the range [5×10−5, 5×10−3], the batch size within the range [16, 64], the intermediate

hidden dimension dh within the range [128, 1024], and the latent space dimension d within

the range [2, 256]. The objective function was minimization of the loss while simultaneously

assuring good utilization of the latent space dimensions. The latter criterion was assessed by

performing a singular value decomposition of the latent space, estimating its effective dimen-

sionality deff as the dimension at which approximately 85% of the variance is explained, and

assuring that deff ≈ d. In our application we do not perform a training/validation/testing

split because the purpose of our RAE model is not as a predictive tool for out-of-sample

inference, but rather we train our RAE model on the complete dataset of 694,982 unique

π-conjugated peptides with the intention of learning a low-dimensional latent space embed-
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ding of our discrete molecular design space for downstream application within our active

learning workflow. The PyTorch machine learning framework is used to build and train the

RAE model.15
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Figure S4: Representative example of regularized autoencoder (RAE) latent space interpo-
lation. Blue points in the left three panels are 2D elevations of a 3D PCA projection of the
full dimensional RAE learned latent space of all 694,982 Xn-4T-Xn molecules. Two random
points within the latent space are selected and spherical linear interpolation44 between the
two points is performed to identify four interpolate locations shown as the red points within
the 3D PCA projection. The corresponding latent space representations of each molecule
nearest to each interpolate is selected and shown as a linear amino acid graphs in the right
visualizations where the solid black node of each graph is the dummy node identifying the
start of the Xn oligopeptide sequence. The values shown above each amino acid graph
indicate the distance within the full-dimensional latent space of the interpolate from the
starting point of the interpolation, such that a distance of zero corresponds to the start of
the interpolation and the location of which is annotated within the left 3D PCA projection
panels. Movements to nearby points within the latent space correspond to minor changes
in the amino acid sequence within the data space, reflective of the smoothness of the la-
tent space embedding where chemically similar molecules are embedded nearby one another
within their latent space projections.
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Table S1: Neural network hyperparamters. Description and specification of hy-
perparamters used to build the RAE neural network. The grammar used to
specify the neural network architecture defines a sequence of operations per-
formed on the input. For example, the sequence [Linear(10, 50), Leaky_ReLU,
Linear(50, 100)] means a linear layer transforms a 10-dimensional input into a 50-
dimensional output that is then acted upon by a Leaky_ReLU non-linearity and
lastly a linear layer transforms these activations into the final 100-dimensional
output.

Parameter Description Value/Specification

d Latent space dimension 32

dh Intermediate hidden dimension in the

encoder layers

128

dn Intermediate hidden dimension of trans-

formed reconstructed node features in

the decoder layers

512

dz Intermediate hidden dimension of trans-

formed latent space representation in

the decoder layers

512

ΩΘ Dense layer within the encoder that

transforms node featuresNi into the ini-

tial hidden states ht=0
i

[Linear(553,dh), Leaky_ReLU)]

ΨΘ MLP within the encoder that trans-

forms edge features Ei,j into a dh × dh

representation

[Linear(135,256), Leaky_ReLU,

Linear(256,512), Leaky_ReLU,

Linear(512,dh × dh)]

ΦΘ MLP within the encoder that trans-

forms output of set2set global pooling

operator hG(k) into latent space repre-

sentation z(k)

[Linear(2dh,dh), Leaky_ReLU,

Linear(dh,d)]

21



ψΘ MLP within the decoder that trans-

forms output the latent space represen-

tation z(k) into reconstructed node fea-

tures N̂ (k)

[Linear(d,256), Leaky_ReLU,

Linear(256,512), Leaky_ReLU,

Linear(512,6×553), Sigmoid]

φ
(i)
Θ MLP within the decoder that trans-

forms reconstructed node features N̂i

into a dn-dimensional intermediate rep-

resentation

[Linear(553,256), Leaky_ReLU,

Linear(256,dn), Leaky_ReLU]

φ
(ii)
Θ MLP within the decoder that trans-

forms the latent space representation

z(k) into a dz-dimensional intermediate

representation

[Linear(d,256), Leaky_ReLU,

Linear(256,dz), Leaky_ReLU]

φ
(iii)
Θ MLP within the decoder that

transforms the concatenation

[
φ

(i)
Θ (N̂

(k)
i )+φ

(i)
Θ (N̂

(k)
j )

2 ||φ(ii)
Θ (z(k))] into

scalar-valued entries of the recon-

structed adjacency matrix Âi,j

[Linear(dn+dz,256), Leaky_ReLU,

Linear(256,512), Leaky_ReLU, Lin-

ear(512,256), Leaky_ReLU, Lin-

ear(256,1), Sigmoid]

Learning

rate used by

the Adam

optimizer

7 × 10−5

β1,β2 Coefficients used by the Adam optimizer

for computing running averages of gra-

dient and its square

β1=0.9, β2=0.999

Batch size Mini-batch size used when performing

mini-batch gradient descent

64
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λREC Weight of reconstructed adjacency ma-

trix relative to the reconstructed node

features in the reconstruction loss term

LREC

553
6 ∼ 92.167

λRAE Weight of the RAE loss term LRAE 1.0

λREG Weight of the L2 weight decay weight in

the regularization loss term LREG ap-

plied to the parameters of the decoder

WDecoder

0.1

Epochs Number of training epochs performed 300

1.4.6 Seeding the initial round of active learning

Having trained our RAE to recover d-dimensional latent space representations {z(k) ∈ IRd}Nk=1

for all N = 694,982 molecules in our Xn-4T-Xn design space, we proceed to select a small

subset of molecules that we will subject to all-atom MD simulations that will comprise the

data set used to initialize the computational and experimental active learning cycle. A

good initial training data set should include a broad and representative sampling of points

throughout the latent space embedding to ensure the initial surrogate model can properly

capture the global structure of the sequence-property relationship over the design space.

Computational. Selecting this initial data set with simple random sampling fails to

account for the embedded data distribution and can result in large regions of the latent

space being under sampled leading to skewed latent space coverage and poor initial surro-

gate model performance. Instead, to properly account for the distribution of points within

our latent space embedding we perform k-means clustering on our set of all N latent space

representations {z(k) ∈ IRd}Nk=1. Employing k-mean++ initialization,45 we identify 100 cen-

troids {c(i)}100
i=1 that we convert to 100 candidate molecules by identifying the latent vectors
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z(k) most proximate each centroid {argmin
z(k)

||z(k) − c(i)||2}100
i=1. We augment this set of 100

molecules with 128 hand-selected molecules within our initial dataset selected to ensure our

initial training data set also contains a diversity of molecules with different properties such

as presence of heteroatoms, varying peptide wing sizes, amino acid polarity, aromaticity,

and hydrophobicity. We term this initial round of simulation data collection computational

Round 0.

Experimental. We seed Round 0 of the experimental active learning search by selecting

11 of the 228 molecules from computational Round 0 for synthesis and testing. The higher

time and labor costs of the experimental screen means that it is a lower throughput process

and so we hand-select ∼5% of the computational Round 0 molecules designed to span a

range of oligopeptide wing lengths and predicted κ and Rg values.

1.5 Step 3: Supervised training of Gaussian process regression (GPR)

surrogate models

Using data collected after each round, in the form of either simulated trajectories or ex-

perimentally recorded spectral shifts, we aim to predict the computational or experimental

fitness of untested candidates. This may be framed as a supervised learning problem where

the training data consists of latent embedding vectors and corresponding fitness measure-

ments for the molecules that have been tested to date, with the goal of predicting the fitness

of the remaining untested candidates based on the location of their learned latent space

molecular representations. Alongside predicting the anticipated fitness of each molecule, it

is also vital to quantify our uncertainty in these predictions so that we may balance selecting

candidates with high predicted fitness (exploitation) and directing sampling to more un-

explored regions of molecular space with high uncertainty (exploration)46 when performing

Bayesian optimization (BO) directed active learning. It is therefore a natural choice to select

Gaussian process regression (GPR) as our surrogate model of choice as it constitutes a non-

parametric Bayesian regression model equipped with built-in uncertainty quantification.46,47

24



Building this surrogate model to predict the performance of untested candidates effectively

circumvents the need to exhaustively simulate or synthesize all the molecules in our de-

sign space in favor of data-driven fitness predictions leveraging learned molecular similarities

reflected in our chemical space embedding.

1.5.1 Computational GPRs

We independently build two GPRs to separately predict the fitness of our two computational

objectives κ andRg. The two GPRs are identical in their construction with the only difference

being the target variable of either κ or Rg, and we henceforth refer to these two models as

GPRκ and GPRRg . These GPRs together will interface with our Bayesian optimization

framework to direct sampling of candidates along the κ-Rg Pareto frontier.

The collection of n π-conjugated peptides simulated after each round comprise our train-

ing dataset X = {(z(k), y(k), σ(k))}nk=1, where {z(1), z(2), . . . , z(n)} are the latent space embed-

dings of the simulated molecules, {y(1), y(2), . . . , y(n)} are the corresponding response vari-

ables y(k) = κ(k) or R(k)
g , and {σ(1), σ(2), . . . , σ(n)} the associated uncertainty in the response

variables determined from block averaging. Each GPR is entirely specified by the choice

of covariance function, which we select in this work to be the popular radial basis function

(RBF) kernel,

k(z, z′) = ν2 exp

(
−||z− z′||2

2l2

)
. (14)

z and z′ correspond to two vectors within our latent space embedding and the marginal

variance ν2 and characteristic length scale l are two kernel hyperparameters. The emukit

wrapper48 to the GPy18 GPR implementations Python libraries are used to fit ν2 and l

via maximum likelihood estimation of the log marginal likelihood of the training data.47

We note that we could have also selected a directionally anisotropic automatic relevance

determination (ARD)47 structure for the kernel function k where separate length scales

parameters are assigned to each input dimension, but we elected to take the simpler and

more computationally efficient approach by selecting the isotropic RBF kernel wherein each
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dimension of the latent space is treated on an equal footing.

The trained GPR fitted over all computational data collected to date is then deployed

to predict the fitness of the remaining molecules within our design space that have not

been simulated and are not contained within the training dataset X. The predicted fitness

y(z∗) ∼ N (µ(z∗), σ(z∗)) of a vector within our latent space embedding z∗ is a Gaussian

distributed random variable with mean µ(z∗) and variance σ2(z∗),

µ(z∗) = K(z∗, ·)[K + σT I]−1y, (15)

σ2(z∗) = k(z∗, z∗)−K(z∗, ·)[K + σT I]−1K(z∗, ·)T , (16)

where K ∈ IRn×n and Ki,j = k(z(i), z(j)), K(z∗, ·) = [k(z∗, z
(1)), k(z∗, z

(2)), . . . , k(z∗, z
(n))],

y = [y(1), y(2), . . . , y(n)]T , and I is a n-by-n identity matrix. The σT vector in Eqn. 15 and

Eqn. 16 added to the diagonal of the kernel matrix K is a heteroskedastic noise built into

the GPR to incorporate the uncertainties σ(k) inherent to each response y(k). The noise

addition also acts as Tikhonov (a.k.a. nugget) regularization that also helps stabilize the

matrix inverse and is particularly useful when two or more points in the domain of the

training dataset lie in close proximity and cause K to be ill-conditioned.49,50 The predicted

mean and uncertainty for any particular latent space embedding vector z(k) predicted by

GPRκ and GPRRg are denoted (µκ(z
(k)), σκ(z

(k))) and (µRg(z
(k)), σRg(z

(k))), respectively.

1.5.2 Multi-fidelity experimental GPR

Our goal ultimately is to identify experimentally high-performing Xn-4T-Xn molecules pos-

sessing large values of the spectral blue shift λ. Purely experimentally data-driven active

learning screening is frustrated by the high time and labor costs of oligopeptide synthesis

and characterization. We can therefore leverage useful correlations and trends present in our

comparatively inexpensive and voluminous supply of simulation data to fit a more accurate

and generalizable surrogate model by building a multi-fidelity GPR (mfGPR) as described
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by Perdikaris et al.51 The operational principle is to train an autoregressive predictor to learn

a mapping from the low-fidelity computational predictions of κ and Rg to the high-fidelity

experimental measurements of λ, thereby fusing the two data streams and furnishing a higher

accuracy surrogate model for λ than would be possible by training over the experimental

data alone.51 The incorporation of computational data in this manner effectively broadens

the purview of our experimental surrogate model to regions of the design space that are

otherwise outside the support of the limited experimental data. Importantly, the compu-

tational and experimental fitness functions need not measure the same observable and the

computational and experimental screening loops can be operated asynchronously and in par-

allel. The primary requirement for success is that the low-fidelity computational predictions

are correlated with and predictive of the high-fidelity experimental measurements. This is

expected to be the case since the two computational fitness measures κ and Rg are structural

measures of the degree of in-register π-stacking within elongated pseudo-1D nanoaggregates

that are characteristics of elevated H-aggregate character that is manifest in larger values of

λ. We denote the multi-fidelity surrogate model built to predict spectral shift measurements

as GPRλ.

The multi-fidelity GPR model is constructed by incorporating the posterior mean pre-

dictions of a low-fidelity GPR model fl into the covariance function of the high-fidelity GPR

kh(z, z
′) enabling us to capture nonlinear and space-dependent cross-correlations between

low- and high-fidelity data. Given we have fit two single-fidelity GPR models GPRκ and

GPRRg over the computational data, our low-fidelity model is defined as the linear combi-

nation,

fl(z
(k)) = α µκ(z

(k)) + (1− α) µRg(z
(k)), (17)

where α is a hyperparameter between 0 and 1. The covariance kernel for the high-fidelity

GPR then takes the form,

kh(z, z
′) = θ0 exp

(
−||z− z′||2

2θ2
1

)
exp

(
−||fl(z)− fl(z′)||2

2θ2
2

)
+ θ3 exp

(
−||z− z′||2

2θ2
4

)
, (18)
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where {θ0, θ1, θ2, θ3, θ4} are kernel hyperparameters. The hyperparameters {θ1, θ2, θ4} control

the bandwidth of the three constituent RBF kernels, whereas {θ0, θ3} control the linear

mixing between the first and second terms. Conceptually, kh(z, z′) can be understood as a

weighted linear sum of two terms. The second term can be viewed as an RBF of a standard

single-fidelity GPR operating over the latent space vectors z that, in isolation, would yield

a surrogate model trained over only the high-fidelity, experimental data. The first term

is the product of two RBF kernels: one operating directly over the latent space vectors z

and the other over the low-fidelity, computational predictions fl(z). The second term in

this product can be conceived as modulating the first to effectively “squeeze together” two

latent space vectors z and z′ if the computational model predicts that their low-fidelity

responses fl(z) and fl(z
′) are close and, conversely, “push apart” two latent space vectors

with divergent low-fidelity predicted responses. As a result, the first term of kh(z, z′) acts to

provide information transfer from the computational surrogate model to the experimental

one by modulating the perceived proximity of z and z′ as measured by the kernel function.

Finally, we observe that the structure of the first term in kh(z, z′) as a product operates akin

to an AND gate – both exp(− ||z−z
′||2

2θ2
1

) and exp(− ||fl(z)−fl(z′)||2
2θ2

2
) must be large for this term

to be large – whereas the structure of kh(z, z′) itself as a sum operates akin to an OR gate –

either exp(− ||z−z
′||2

2θ2
1

) exp(− ||fl(z)−fl(z′)||2
2θ2

2
) or exp(− ||z−z

′||2
2θ2

4
) can be large for the overall kernel

output to be large.52

Equipped with this modified kernel function kh and n observations of high-fidelity train-

ing data Xh = {(z(k), λ(k), σ(k))}nk=1 consisting of latent space representations of the experi-

mentally tested π-conjugated peptides {z(1), z(2), . . . , z(n)} and spectral shift measurements

{λ(1), λ(2), . . . , λ(n)} with their corresponding uncertainties {σ(1), σ(2), . . . , σ(n)}, we can pro-

ceed to fit this multi-fidelity GPRλ using the emukit wrapper48 to the GPy18 GPR implemen-

tation Python libraries to fit the kernel hyperparameters via maximum likelihood estimation

of the log marginal likelihood of the training data.47 Spectral shift predictions for latent

space vectors z(k) are produced from the fitted mfGPR using Eqs. 15 and 16 to predict
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the mean spectral shift µλ(z(k)) and corresponding uncertainty σλ(z
(k)) for the remaining

untested molecules in our design space. Since the posterior distribution of the multi-fidelity

GPRλ is the result of a composition of two Gaussian process priors, it is no longer guaranteed

to itself be Gaussian.51 Analytical expressions for the posterior of this deep Gaussian process

are typically unavailable, and the mean and variance of the posterior distribution accounting

for the propagation of uncertainty through the multi-layer Gaussian process must instead be

numerically estimated by Monte-Carlo estimation.51 This procedure is very computationally

expensive and we instead make the simplifying approximation that the posterior may be

approximately represented as a Gaussian in order to enable the use of the analytical ex-

pressions Eqs. 15 and 16 that require this assumption. The hyperparameter α in Eq. 17 is

determined by five-fold cross validation of the mean absolute error in predicting the spectral

shift measurements. Determining the value of α that yields the lowest generalization error of

the experimental surrogate model provides an empirical fit for the optimal balance between

κ and Rg in simulation that correlates best with the experimentally measured spectral shifts

λ. We hesitate to accord too much significance to the optimal value of α, but present in

Fig. S5 the results of our α grid search for the terminal experimental active learning round.

In the vicinity of α ≈ 0.67, we observe substantial improvements in the mean average error

(MAE) predictive performance of the multi-fidelity GPRλ used to predict the spectral shift

λ relative to a single-fidelity GPR model trained over only experimental measurements. This

∼27% improvement in the MAE of GPRλ clearly illustrates the benefit of the multi-fidelity

approach.

The benefit of our multi-fidelity GPR approach can also be clearly seen by examining the

distribution of candidates selected throughout our experimental screening and comparing the

mfGPR posterior distribution to a single-fidelity GPR analog. The latent space locations of

molecules which were simulated throughout all computational rounds is shown in Fig. S6a

colored by to the number of contacts per molecule κ and in Fig. S6b colored by to the

radius of gyration Rg, while the latent space locations of molecules which that underwent
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Figure S5: Cross validation determination of α in Eq. 17 determining the balance between κ
andRg in the low-fidelity model used to fit the multi-fidelity GPR. The Leave One Out (LOO)
cross validation score of the multi-fidelity GPR is calculated for 100 values of α ∈ [0, 1.0]. The
value of α yielding the lowest LOO mean absolute error (MAE) is then selected to build the
multi-fidelity GPRλ surrogate model to predict spectral shift measurements and interfaced
with the Bayesian optimizer to select candidates for the next round of experimental testing.
The plot above shows the cross validation after the terminal experimental active learning
round. The dotted horizontal line represents the LOO MAE of a single-fidelity GPR fit to
predict spectral shift measurements in the absence of the low-fidelity computational data.
The ∼27% improvement in the MAE for the mfGPR in the vicinity of the optimal α=0.6667
illustrates the value of the computational data stream in substantially improving predictive
accuracy of GPRλ.

experimental testing are isolated and is shown in Fig. S6c colored by the measured spectral

shift λ. Latent space locations for the experimentally tested molecules are interspersed

in regions of dense computational sampling indicative of the transfer of information from

the single-fidelity GPRs helping identify promising regions of latent space to explore. This

information fusion can also be clearly illustrated when comparing the mfGPR posterior

(Fig. S7a and Fig. S7c) to a single-fidelity GPR trained only on all accumulated experimental

data to predict spectral shift measurements (Fig. S7b and Fig. S7d). We notice the mfGPR

produces favorable (high λ) predictions broadly throughout the latent space and outside the

domain of dense experimental sampling, while the single-fidelity GPR has largely limited
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favorable predictions to latent space locations nearby experimental training data points. This

additional predictive breadth exemplifies the information fusion capabilities of multi-fidelity

modeling to successfully integrate voluminous simulation data with sparse of experimental

measurements.
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b

c

λ

Figure S6: Regularized autoencoder (RAE) latent space locations of all simulated and ex-
perimentally tested molecules throughout the active learning procedure. Points in gray
represent all 694,982 molecules in our Xn-4T-Xn design space projected into the top two
principal components of the full-dimensional latent space embedding. All molecules which
were simulated are colored according to their associated average number of contacts per
molecule κ (a) and radius of gyration Rg (b). Faded contours represent a kernel density
estimate of the distribution of simulated points within the first two principal components
generated with Seaborn.53 (c) Molecules also subject to experimental testing are annotated
and colored according to their measured spectral shift. Latent space locations of many ex-
perimentally tested candidates are selected nearby areas of dense computational sampling,
reflective of the multi-fidelity GPR incorporating simulation data to help identify promising
regions of latent space and direct sampling.
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Figure S7: Posterior mean µλ and uncertainty σλ of multi-fidelity and single-fidelity spectral
shift λ predicting Gaussian Process Regression (GPRλ) surrogate models. (a, c) A multi-
fidelity GPRλ surrogate model is fit to predict the mean spectral shift µλ and uncertainty σλ
trained over the 28 experimentally tested molecules and 1181 simulated molecules. (b, d) A
single-fidelity GPRλ surrogate model fit to predict µλ and σλ of untested molecules trained
only over the 28 experimentally tested molecules. The faded gray contours in panels a and
b represent a kernel density estimate for the distribution of simulated data within the first
two principal components constructed and displayed in Fig. S6, and are meant to guide the
eye when comparing the different panels. The single-fidelity GPRλ only produces favorable
predictions near regions of dense experimental sampling (cf. Fig. S6c), with the remaining
points in the extrapolative regime of the GPRλ producing mean-centered predictions.47 The
multi-fidelity GPRλ produces more favorable and confident predictions distributed broadly
throughout the latent space due to the information incorporated from simulation data via
the low-fidelity model.51
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1.6 Step 4: Bayesian optimization (BO) selection of next molecules

for computational/experimental screening

The last step in our active learning cycle is to interrogate the surrogate model predictions to

select the most promising nextXn-4T-Xn molecules for the next round of computational sim-

ulation and experimental testing. Bayesian optimization is a natural choice of optimization

algorithm here because we have expensive, nondifferentiable, and noisy measurements that

we strive to optimize in the minimum number of necessary iterations.46,54,55 Multi-objective

Bayesian optimization using random scalarizations56 is performed within the computational

active learning pipeline where we seek to recover the κ-Rg Pareto front. The experimental ac-

tive learning pipeline fuses experimental and computational data within a multi-fidelity GPR

that that is then used to perform single-objective Bayesian optimization to maximize experi-

mentally measured spectral blue-shifts λ. Together, the hybrid computational/experimental

active learning protocol guides an efficient search for Xn-4T-Xn molecules with large spec-

tral blue shifts λ indicative of strong H-type π-stacking, the emergence of supramolecular

electronic delocalization, and the potential for superior electronic and optical functionality.

1.6.1 Computational multi-objective Bayesian optimization to recover the κ−Rg

Pareto frontier

Within the computational active learning loop, we use a method for multi-objective Bayesian

optimization based on random scalarizations of acquisition functions.56 Single-objective

Bayesian optimization operates by passing the surrogate model predictions through an ac-

quisition function u, the maximizer of which identifies the most promising candidate to query

z† based on the past n observations {(z(k), λ(k), σ(k))}nk=1,

z† = argmax
z(l)

u(z(l) | {(z(k), λ(k), σ(k))}nk=1). (19)
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While some methods for multi-objective Bayesian optimization such as ParEGO57 consider a

linear combination of multiple objectives to compute a single scalar objective, the method of

random scalarizations by Paria et al.56 maintains separate surrogate models for each objective

and then considers a linear combination of the corresponding acquisition functions. This

formulation for multi-objective optimization achieves sublinear regret bounds contingent on

the choice of acquisition function being either Thompson sampling58 or Upper Confidence

Bound59 (UCB).56 In this work, we choose to implement the UCB acquisition function,

UCB(z(k); β) = µ(z(k)) + βσ(z(k)), (20)

where β is a hyperparameter controlling the explore-exploit trade-off and µ(z(k)), σ(z(k)) are

the GPR predicted mean and uncertainty for the latent space vector z(k) within the smooth,

low-dimensional embedding of the molecular design space within the learned RAE latent

space. In our particular application, the two independent GPR surrogate models GPRκ

and GPRRg are used to build two independent acquisition functions UCBκ and UCBRg

from which we construct the scalarized acquisition function u(z(k); β, δ) under the method

of random scalarizations,

u(z(k); β, δ) = δ UCBκ + (1− δ) UCBRg

= δ (µκ(z
(k)) + βσκ(z

(k))) + (1− δ) (µRg(z
(k)) + βσRg(z

(k))), (21)

where δ is a hyperparameter between 0 and 1 controlling the balance between UCBκ and

UCBRg .

The next best candidate to query by computational simulation z† = argmax
z(k)

u(z(k); β, δ)

is theXn-4T-Xn molecule that has not been simulated to date that maximizes the scalaraized

acquisition function u(z(k); β, δ) for a particular instantiation of β and δ. Rather than pre-

specifying values of the hyperparameters β and δ, which would correspond to a particular

choice of a trade-off between exploit and explore and one particular scalarization, we rather
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integrate over these two hyperparameters by performing repeated queries for the optimal

candidate molecule under different choices for β and δ under a batched selection procedure

that makes optimal utilization of our parallel compute resources by testing multiple molecules

within each active learning iteration. Specifically, in each iteration of the active learning pro-

cess we instantiate randomly selected values of β over the log10-uniform range β ∈ [10−4, 104]

and δ over the uniform range δ ∈ [0, 1] and select from the Xn-4T-Xn molecules that which

maximizes u(z(k); β, δ). We repeat this procedure until 25 unique candidate molecules are

selected and pass these for simulation by all-atom MD. The results of these MD calculations

are then appended to our library of simulated Xn-4T-Xn molecules and we commence a new

round of computational active learning.

1.6.2 Experimental single-objective Bayesian optimization to maximize λ

We employ a single-fidelity Bayesian optimizer to interrogate the spectral shift predictions

of the trained surrogate model GPRλ and identify the most promising molecular candidates

for further rounds of experimental screening as those molecules with RAE latent space co-

ordinates z† that maximize an acquisition function u(z). While there are many choices of

acquisitions functions for single-fidelity Bayesian optimization,46 here employ the popular

expected improvement (EI) acquisition function.54,60 Appealing again to the simplifying as-

sumption that the posterior distribution of GPRλ may be approximated as Gaussian, we

circumvent the need from computationally burdensome Monte Carlo estimation of its mean

and variance51 and can employ analytical expressions for the EI acquisition function,54,60

EI(z(k)) =


(µλ(z

(k))− λmax − ξ)Φ(Z) + σλ(z
(k))φ(Z) σλ(z

(k)) > 0

0 σλ(z
(k)) = 0

, (22)

Z =


µλ(z(k))−λmax−ξ

σλ(z(k))
σλ(z

(k)) > 0

0 σλ(z
(k)) = 0

, (23)
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where λmax = max
λ(k)
{λ(k)}nk=1 is the maximum observed spectral shift of all n experimentally

tested molecules, ξ is a hyperparameter controlling the exploitation-exploration trade-off, φ

is the standard normal probability density function, and Φ is the standard normal cumulative

distribution function. Exploration is promoted by the second term in Eq. 22 helping to select

points with high posterior uncertainty σλ(z(k)), while the first term promotes exploitation

selecting points with high predicted posterior mean µλ(z(k)). In this work we fix the value

of ξ = 0.01 as recommended by Lizotte.60

The typical Bayesian optimization workflow selects the next candidate to query z† by

identifying the maximizer of the EI acquisition function over all experimentally untested

candidates at each iteration z† = argmax
z(k)

EI(z(k)). With the capacity to synthesize and

characterize many molecules in parallel we can more rapidly populate our training dataset

by testing a batch of molecules each iteration to save time and collect experimental data

faster than would otherwise be possible with simple sequential sampling. To select a batch

of π-conjugated peptides each iteration we perform a slightly modified human-in-the-loop

version of the Kringing believer61 algorithm. Given an the initial training data set of n

labeled molecules {z(1), z(2), . . . , z(n)} with measured spectral shifts {λ(1), λ(2), . . . , λ(n)} and

uncertainties {σ(1), σ(2), . . . , σ(n)}, the Kringing believer method selects a batch of q candi-

dates by first selecting the first member of the batch z(n+1) by identifying the maximizer of

the EI acquisition function given the initial n training data points,

z(n+1) = argmax
z(k)

EI(z(k) | {z(l), λ(l), σ(l)}nl=1, z
(k) /∈ {z(1), z(2), . . . , z(n)}). (24)

The corresponding GPRλ predicted mean µλ(z
(n+1)) and uncertainty σλ(z

(n+1)) are then

appended to the training dataset {z(l), λ(l), σ(l)}(n+1)
l=1 and the GPRλ is refit to the artifi-

cially augmented training data. Using the posterior predictions from this newly refit GPRλ,

the next member of the batch z(n+2) is then selected from the pool of untested candidates
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excluding the molecules that have been artificially appended to the training dataset,

z(n+2) = argmax
z(k)

EI(z(k) | {z(l), λ(l), σ(l)}(n+1)
l=1 , z(k) /∈ {z(1), z(2), . . . , z(n), z(n+1)}). (25)

This process is iterated until q candidates have been selected {z(n+1), z(n+2), . . . , z(n+q)}.

Rather than simply taking these first q selected candidates and passing them onto the next

round of experimentation, we enumerate a larger list of q=75 candidates and select a subset of

8-9 molecules based on human-in-the-loop down-selection. A common failing of the Kriging

Believer method is the tendency to identify largely correlated candidates within a small

batch due to an over-confidently high prediction at a point leading to an erroneously large

EI in the vicinity of that point.61 Our human-in-the-loop approach circumvents this issue

by enumerating a large number of candidates that we may use our expert intuition to select

a subset from for the next round of experimentation based on diversity and anticipated

performance. The success of this collaborative human-machine paradigm has been previously

demonstrated in the data-driven discovery of molecular organic light emitting diodes.62 The

selected molecules are then synthesized and the measured UV-vis spectral shifts λ appended

to our pool of labeled experimental data before commencing another round of experimental

active learning.

1.7 Nonlinear manifold learning of low-dimensional oligopeptide as-

sembly pathways using diffusion maps

After completing the hybrid computational/experimental screen, we possess a library of MD

simulation trajectories for the self-assembly dynamics of 1181 (1178 molecules suggested

from the computational screen and three molecules suggested from the experimental screen

which we also simulated) different Xn-4T-Xn candidate molecules. We subject this ensemble

of trajectory data to nonlinear dimensionality reduction using diffusion maps63,64 to furnish

a low-dimensional embedding of the trajectories through the high-dimensional Cartesian co-
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ordinate space.21,65–67 This low-dimensional projection of the assembly trajectories preserves

the important high-variance collective motions of the self-assembly process and can expose

the self-assembly pathways and mechanisms followed by the various oligopeptides. We inter-

rogate this embedding to expose differences in the assembly pathways followed by the high-

performing and low-performing candidates in our screen, and in doing so gain insight and

understanding of the molecular mechanisms underpinning desirable self-assembling behav-

iors. We have previously employed this approach to discover assembly pathways within the

family of DX3-(1,4-distyrylbenzene)-X3D oligopeptides.20 We note that our diffusion maps

furnish a low-dimensional embedding of the configurational coordinate space traversed by our

MD simulations, and that this embedding is completely independent of the low-dimensional

embedding of the molecular design space furnished by the RAE that was employed within

our active learning protocol.

The application of diffusion maps over the configurational space of π-conjugated peptide

assemblies requires a distance metric di,j that calculates the similarity between pairs of

simulation snapshots i and j. The metric must satisfy two criteria: (i) it should be sufficiently

general such that the snapshots can come from the same molecular simulation trajectory of

one particular Xn-4T-Xn molecule, or from trajectories of two different molecules (i.e., with

different Xn peptide wings) and (ii) it should be invariant to rotations, translations, and

permutations of atoms within our multi-molecule assemblies such that the diffusion map

embedding does not learn and project these trivial transformations into the low-dimensional

embedding. A popular and elegant metric satisfying these criteria is the smooth overlap

of atomic positions (SOAP) kernel of Csanyi and coworkers68 that we apply to the heavy

(i.e., C and S) atoms comprising the 4T π-cores. The SOAP framework has been previously

deployed in a number of applications to derive continuous and real-valued fingerprints of

atomic environments used for downstream analysis and machine learning tasks.69–72

The key idea of SOAP is describing the local environment around each atom by consider-

ing the distribution of neighboring atoms while remaining sensitive to their relative locations.
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SOAP encapsulates this information on the local atomic geometry about a particular location

in space ri using a descriptor called the power spectrum pZ1,Z2

n,n′,l (ri) ,

pZ1,Z2

n,n′,l (ri) = π

√
8

2l + 1

∑
m

c(ri)
Z1
n,l,mc(ri)

Z2

n′,l,m, (26)

c(ri)
Zi
n,l,m =

∫∫∫
R3

gn(r)Yl,m(θ, φ)ρZi(ri)dV, (27)

where r, θ, φ are variables of integration, ρZi(ri) is a Gaussian smoothed density of atoms

with atomic number Zi centered at location ri, gn(r) are radial basis functions indexed by n

and n′, and Yl,m(θ, φ) are real spherical harmonics indexed by l and m. For our radial basis

functions gn(r) we use the spherical Gaussian type orbitals and consider basis functions up

to nmax=12, the maximum angular degree of spherical harmonics up to lmax=9, and a cutoff

radius of rmax=5 nm. This formalism yields a fixed-length, real-valued power spectrum

pZ1,Z2

n,n′,l (ri) fingerprint calculated about each atom center ri within our simulation frame.

The SOAP power spectrum is not particularly amenable to simple interpretability, but can

be conceived of as a measure of the spatial distribution of atoms that respects rotational,

translational, and permutational invariance, and has proven to be a powerful featurization

for machine learning applications in atomic environments.68–72

We obtain Nat power spectra for each simulation snapshot centered on the Nat atomic

sites of all atoms in the system. A global descriptor (pZ1,Z2

n,n′,l )
(α) for simulation snapshot α is

extracted by averaging the power spectra over all Nat atomic sites,

(pZ1,Z2

n,n′,l )
(α) =

1

Nat

Nat∑
i=1

pZ1,Z2

n,n′,l (r
(α)
i ), (28)

where r
(α)
i is the location of atom i within simulation frame α.

The distance metric dα,β we use to compare global environments between the atomic
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geometries in simulation frames α and β is then compactly represented via a dot product,69

dα,β =
√

2− 2 χα,β (29)

χα,β = ̂(pZ1,Z2

n,n′,l )
(α) · ̂(pZ1,Z2

n,n′,l )
(β) (30)

where · denotes the dot product and the ̂ adornment indicates a unit-length vector such

that x̂i = xi√
xi·xi .

By applying this calculation to only the heavy C and S atoms constituting the 4T π-

cores shared by all members of the Xn-4T-Xn family, dα,β is a π-core centric metric that

can be applied to any pair of Xn-4T-Xn molecules. Although the metric explicitly neglects

the spatial conformations of the Xn peptide wings, the influence of the wings is implicitly

preserved within the dα,β distance metric through their influence on the spatial arrangement

of the π-cores. All SOAP calculations are carried out using the implementation provided in

the DScribe python package.73

The SOAP-based distance metric dα,β defining the (dis)similarity of simulation frames α

and β is then passed to the diffusion map as a pairwise distance matrix d of size 118,100-by-

118,100, where 118,100 is the total number of snapshots harvested from the 200 ns production

runs over all 1181 simulation trajectories at a period of 2 ns. The first step in the diffusion

map analysis is to convolve the d matrix with a Gaussian kernel to form the matrix A,

Aα,β = exp

(
−d2δ

α,β

2ε

)
. (31)

The kernel bandwidth ε defines the step size of a random walk over the 118,100 snapshots

in the high-dimensional coordinate space and can be colloquially interpreted as the char-

acteristic size of the neighborhood around each point or how far each point can “see” via

the distance metric dα,β. An appropriate value of ε can be automatically tuned based on

the structure of the A matrix by specifying it to lie in the sigmoidal region of a plot of∑
α,β Aα,β vs. ε.21,63,66 Due to the heterogeneous density distribution of points over the high-
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dimensional coordinate space, we also find it useful to apply the density-adaptive variant

of diffusion maps proposed by Wang et al.,74 which introduces a hyperparameter δ ∈ (0, 1]

within the definition of Aα,β that helps to smooth out density fluctuations within the data

while still preserving the metric properties of dα,β. Standard diffusion maps correspond to

δ = 1, while as δ → 0 the distribution of distances narrows and effectively helps to smooth

out the embedding. In this work we select δ=0.5 and ε=0.175.

The next step is to row normalize the kernelized distance matrix A to form a right

stochastic Markov transition matrix M defining a discrete random walk over the data,

M = D−1A, (32)

Dα,β =
N∑
β=1

Aα,β. (33)

The probability of hopping from point i to point j in t steps within this random walk over the

data is given by the exponentiated matrix element M t
α,β.63,64 Provided M is irreducible and

aperiodic, the theory of Markov chains guarantees that it possesses a unique largest eigen-

value of λ1 = 1 with associated (trivial) eigenvector ψ1 = 1 corresponding to the stationary

distribution of the random walk.63 The higher order eigenvalues 1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ . . .

corresponding to eigenvectors ψ2,ψ3,ψ4, . . . characterize progressively faster relaxing modes

of the random walk. By identifying a gap in eigenvalue spectrum we can perform dimen-

sionality reduction and retain the k non-trivial eigenvectors ψ2,ψ3, . . . ,ψk+1 corresponding

to the leading k eigenvalues λ2, λ3, . . . , λk+1. These eigenvectors effectively describe the slow

subspace of the random walk and define an embedding of the data onto a low-dimensional in-

trinsic manifold to which the dynamical evolution of the random walk is effectively restrained

and which contains the leading high-variance collective motions of the system governing its

long-time evolution.63,64 The diffusion map embedding of a simulation frame α into the
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leading k non-trivial eigenvectors is defined as,

frameα → [ψ2(α),ψ3(α), . . . ,ψk+1(α)]. (34)

While the eigenvalue spectrum displays the most prominent gap between λ4 and λ5

suggesting a 3D manifold (Fig. S8a), the embedding between ψ2 and ψ4 (Fig. S8b) reveals

a functional dependence and collapse of these two eigenvectors onto a pseudo-1D manifold.

This suggests that these two components characterize the same collective dynamical mode

and enable us to eliminate ψ4 without significant loss of information to construct a 2D

embedding into the two leading non-trivial eigenvectors {ψ2,ψ3} (Fig. S8c).75

a b c

Figure S8: Diffusion map analysis of molecular assembly pathways. (a) Eigenvalue spectrum
from the application of diffusion maps to the ensemble of 1181 molecular simulation trajec-
tories conducted over the course of the computational screen. Two-dimensional embeddings
of the 118,100 simulation snapshots harvested from the 1181 simulation trajectories into (b)
ψ2 and ψ4 and (c) ψ2 and ψ3 where each frame is colored by the log of the radius of gyra-
tion log(Rg). Although the eigenvalue spectrum gap observed between λ4 and λ5 suggests
a 3D embedding into {ψ2,ψ3,ψ4}, an observed functional dependence between ψ2 and ψ4

permits us to eliminate ψ4 and construct a 2D intrinsic manifold in {ψ2,ψ3}.

Analysis of the projection of the ensemble of Xn-4T-Xn simulation trajectories into the

intrinsic manifold provides a wealth of interpretable information about the dynamical evo-

lution of the self-assembly processes. For example, we can identify which molecules tend to

follow similar assembly courses, resolve important collective motions governing the assembly

dynamics, and extract structural mechanisms of assembly and correlate these with the rank

ordering of the molecular candidates furnished by our sequence-property surrogate model.
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1.8 Peptide Synthesis

1.8.1 Round 0

HO-DG-4T-GD-OH: Solid-supportedWang-DG-NH2 peptide N-acylated with 5-bromothiophene-

2-carboxylic acid was prepared (0.2 mmol). The peptide was coupled with 5,5′-bis-trimethylstannyl-

[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence of Pd(PPh3)4 (0.0080 mmol, 0.0093

g) using the general on-resin Stille coupling procedure for 20 hours. Resin was then subjected

to the general cleavage procedure and crude peptide was obtained as a yellow powder. Fol-

lowing HPLC purification, 0.0146 mmol, 0.0111 g, 15% yield. MS (ESI) m/z 1524.2 (2M-H)−

(calc. 1523.1), m/z 1142.1 (3M-2H)2− (calc. 1142.1), m/z 760.98 (M-H)− (calc. 761.04),

m/z 380.03 (M-2H)2− (calc. 380.01).

HO-VD-4T-DV-OH: Solid-supportedWang-VD-NH2 peptide N-acylated with 5-bromothiophene-

2-carboxylic acid was prepared (0.2 mmol). The peptide was coupled with 5,5′-bis-trimethylstannyl-

[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence of Pd(PPh3)4 (0.0080 mmol, 0.0093

g) using the general on-resin Stille coupling procedure for 20 hours. Resin was then subjected

to the general cleavage procedure and crude peptide was obtained as a yellow powder. Fol-

lowing HPLC purification, 0.0130 mmol, 0.0110 g, 13% yield. MS (ESI) m/z 1692.9 (2M-H)−

(calc. 1691.3), m/z 1410.2 (5M-3H)3− (calc. 1409.2), m/z 1268.9 (3M-2H)2− (calc. 1268.2),

m/z 845.06 (M-H)− (calc. 845.14), m/z 421.96 (M-2H)2− (calc. 422.07).

HO-EV-4T-VE-OH: Solid-supportedWang-EV-NH2 peptide N-acylated with 5-bromothiophene-

2-carboxylic acid was prepared (0.2 mmol). The peptide was coupled with 5,5′-bis-trimethylstannyl-

[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence of Pd(PPh3)4 (0.0080 mmol, 0.0093

g) using the general on-resin Stille coupling procedure for 20 hours. Resin was then subjected

to the general cleavage procedure and crude peptide was obtained as a yellow powder. Fol-

lowing HPLC purification, 0.0106 mmol, 0.0093 g, 11% yield. MS (ESI) m/z 1748.1 (2M-H)−

(calc. 1747.3), m/z 1456.8 (5M-3H)3− (calc. 1455.9), m/z 1311.1 (3M-2H)2− (calc. 1310.2),

m/z 873.18 (M-H)− (calc. 873.16), m/z 436.18 (M-2H)2− (calc. 436.08).
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HO-EGG-4T-GGE-OH: Prepared according to the protocol reported before.29

HO-VEF-4T-FEV-OH: Solid-supported Wang-VEF-NH2 peptide N-acylated with 5-

bromothiophene-2-carboxylic acid was prepared (0.2 mmol). The peptide was coupled with

5,5′-bis-trimethylstannyl-[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence of Pd(PPh3)4

(0.0080 mmol, 0.0093 g) using the general on-resin Stille coupling procedure for 20 hours.

Resin was then subjected to the general cleavage procedure and crude peptide was obtained

as a yellow powder. Following HPLC purification, 0.0098 mmol, 0.0114 g, 10% yield. MS

(ESI) m/z 1947.4 (5M-3H)3− (calc. 1946.2), m/z 1752.4 (3M-2H)2− (calc. 1751.5), m/z

1557.6 (4M-3H)3− (calc. 1556.7), m/z 1167.6 (M-H)− (calc. 1167.3), m/z 583.28 (M-2H)2−

(calc. 583.15).

HO-AAD-4T-DAA-OH: Solid-supported Wang-AAD-NH2 peptide N-acylated with

5-bromothiophene-2-carboxylic acid was prepared (0.2 mmol). The peptide was coupled

with 5,5′-bis-trimethylstannyl-[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence of

Pd(PPh3)4 (0.0080 mmol, 0.0093 g) using the general on-resin Stille coupling procedure for

20 hours. Resin was then subjected to the general cleavage procedure and crude peptide

was obtained as a yellow powder. Following HPLC purification, 0.0208 mmol, 0.0194 g, 21%

yield. MS (ESI) m/z 465.03 (M-2H)2− (calc. 465.08), m/z 311.03 (M-2H)3− (calc. 309.72).

HO-DVAA-4T-AAVD-OH: Solid-supportedWang-DVAA-NH2 peptide N-acylated with

5-bromothiophene-2-carboxylic acid was prepared (0.2 mmol). The peptide was coupled

with 5,5′-bis-trimethylstannyl-[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence of

Pd(PPh3)4 (0.0080 mmol, 0.0093 g) using the general on-resin Stille coupling procedure for

20 hours. Resin was then subjected to the general cleavage procedure and crude peptide

was obtained as a yellow powder. Following HPLC purification, 0.0264 mmol, 0.0298 g, 26%

yield. MS (ESI) m/z 1129.2 (M-H)− (calc. 1129.3), m/z 564.28 (M-2H)2− (calc. 564.15).

HO-DVAG-4T-GAVD-OH: Solid-supportedWang-DVAG-NH2 peptide N-acylated with

5-bromothiophene-2-carboxylic acid was prepared (0.2 mmol). The peptide was coupled

with 5,5′-bis-trimethylstannyl-[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence of
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Pd(PPh3)4 (0.0080 mmol, 0.0093 g) using the general on-resin Stille coupling procedure for

20 hours. Resin was then subjected to the general cleavage procedure and crude peptide

was obtained as a yellow powder. Following HPLC purification, 0.0258 mmol, 0.0284 g, 26%

yield. MS (ESI) m/z 1101.2 (M-H)− (calc. 1101.3), m/z 550.19 (M-2H)2− (calc. 550.63).

HO-AAED-4T-DEAA-OH: Solid-supported Wang-AAED-NH2 peptide N-acylated

with 5-bromothiophene-2-carboxylic acid was prepared (0.2 mmol). The peptide was cou-

pled with 5,5′-bis-trimethylstannyl-[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence

of Pd(PPh3)4 (0.0080 mmol, 0.0093 g) using the general on-resin Stille coupling procedure

for 20 hours. Resin was then subjected to the general cleavage procedure and crude peptide

was obtained as a yellow powder. Following HPLC purification, 0.0196 mmol, 0.0233 g, 20%

yield. MS (ESI) m/z 594.08 (M-2H)2− (calc. 594.12), m/z 395.83 (M-3H)3− (calc. 395.74).

HO-VEFAG-4T-GAFEV-OH: Solid-supportedWang-VEFAG-NH2 peptide N-acylated

with 5-bromothiophene-2-carboxylic acid was prepared (0.2 mmol). The peptide was cou-

pled with 5,5′-bis-trimethylstannyl-[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence

of Pd(PPh3)4 (0.0080 mmol, 0.0093 g) using the general on-resin Stille coupling procedure

for 20 hours. Resin was then subjected to the general cleavage procedure and crude peptide

was obtained as a yellow powder. Following HPLC purification, 0.0078 mmol, 0.0111 g, 7.8%

yield. MS (ESI) m/z 1424.3 (M-H)− (calc. 1423.4), m/z 711.29 (M-2H)2− (calc. 711.21).

HO-VEVEV-4T-VEVEV-OH: Solid-supportedWang-VEVEV-NH2 peptide N-acylated

with 5-bromothiophene-2-carboxylic acid was prepared (0.2 mmol). The peptide was cou-

pled with 5,5′-bis-trimethylstannyl-[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence

of Pd(PPh3)4 (0.0080 mmol, 0.0093 g) using the general on-resin Stille coupling procedure

for 20 hours. Resin was then subjected to the general cleavage procedure and crude peptide

was obtained as a yellow powder. Following HPLC purification, 0.0086 mmol, 0.0131 g, 8.6%

yield. MS (ESI) m/z 1527.9 (M-H)− (calc. 1527.5), m/z 763.29 (M-2H)2− (calc. 763.25).
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1.8.2 Round 1

HO-DT-4T-TD-OH: Solid-supportedWang-DT-NH2 peptide N-acylated with 5-bromothiophene-

2-carboxylic acid was prepared (0.2 mmol). The peptide was coupled with 5,5′-bis-trimethylstannyl-

[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence of Pd(PPh3)4 (0.0080 mmol, 0.0093

g) using the general on-resin Stille coupling procedure for 20 hours. Resin was then sub-

jected to the general cleavage procedure and crude peptide was obtained as a yellow powder.

Following HPLC purification, 0.0092 mmol, 0.0078 g, 9.2% yield. MS (ESI) m/z 424.01

(M-2H)2− (calc. 424.05).

HO-EN-4T-NE-OH: Solid-supportedWang-EN-NH2 peptide N-acylated with 5-bromothiophene-

2-carboxylic acid was prepared (0.2 mmol). The peptide was coupled with 5,5′-bis-trimethylstannyl-

[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence of Pd(PPh3)4 (0.0080 mmol, 0.0093

g) using the general on-resin Stille coupling procedure for 20 hours. Resin was then sub-

jected to the general cleavage procedure and crude peptide was obtained as a yellow powder.

Following HPLC purification, 0.0072 mmol, 0.0065 g, 7.2% yield. MS (ESI) m/z 451.22

(M-2H)2− (calc. 451.06).

HO-DSG-4T-GSD-OH: Solid-supported Wang-DSG-NH2 peptide N-acylated with 5-

bromothiophene-2-carboxylic acid was prepared (0.2 mmol). The peptide was coupled with

5,5′-bis-trimethylstannyl-[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence of Pd(PPh3)4

(0.0080 mmol, 0.0093 g) using the general on-resin Stille coupling procedure for 20 hours.

Resin was then subjected to the general cleavage procedure and crude peptide was obtained

as a yellow powder. Following HPLC purification, 0.0104 mmol, 0.0097 g, 10% yield. MS

(ESI) m/z 935.05 (M-H)− (calc. 935.11), m/z 467.06 (M-2H)2− (calc. 467.05).

HO-SSD-4T-DSS-OH: Solid-supported Wang-SSD-NH2 peptide N-acylated with 5-

bromothiophene-2-carboxylic acid was prepared (0.2 mmol). The peptide was coupled with

5,5′-bis-trimethylstannyl-[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence of Pd(PPh3)4

(0.0080 mmol, 0.0093 g) using the general on-resin Stille coupling procedure for 20 hours.

Resin was then subjected to the general cleavage procedure and crude peptide was obtained
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as a yellow powder. Following HPLC purification, 0.0112 mmol, 0.0112 g, 11% yield. MS

(ESI) m/z 497.02 (M-2H)2− (calc. 497.07).

HO-DGL-4T-LGD-OH: Solid-supported Wang-DGL-NH2 peptide N-acylated with 5-

bromothiophene-2-carboxylic acid was prepared (0.2 mmol). The peptide was coupled with

5,5′-bis-trimethylstannyl-[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence of Pd(PPh3)4

(0.0080 mmol, 0.0093 g) using the general on-resin Stille coupling procedure for 20 hours.

Resin was then subjected to the general cleavage procedure and crude peptide was obtained

as a yellow powder. Following HPLC purification, 0.0142 mmol, 0.0141 g, 14% yield. MS

(ESI) m/z 493.11 (M-2H)2− (calc. 493.12).

HO-DNDN-4T-NDND-OH: Solid-supported Wang-DNDN-NH2 peptide N-acylated

with 5-bromothiophene-2-carboxylic acid was prepared (0.2 mmol). The peptide was coupled

with 5,5′-bis-trimethylstannyl-[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence of

Pd(PPh3)4 (0.0080 mmol, 0.0093 g) using the general on-resin Stille coupling procedure for

20 hours. Resin was then subjected to the general cleavage procedure and crude peptide

was obtained as a yellow powder. Following HPLC purification, 0.0072 mmol, 0.0096 g,

7.2% yield. MS (ESI) m/z 1410.3 (M+2K-3H) - (calc. 1409.2), m/z 1334.06 (M-H)− (calc.

1333.23), m/z 666.22 (M-2H)2− (calc. 666.11).

HO-IDSV-4T-VSDI-OH: Solid-supported Wang-IDSV-NH2 peptide N-acylated with

5-bromothiophene-2-carboxylic acid was prepared (0.2 mmol). The peptide was coupled

with 5,5′-bis-trimethylstannyl-[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence of

Pd(PPh3)4 (0.0080 mmol, 0.0093 g) using the general on-resin Stille coupling procedure for

20 hours. Resin was then subjected to the general cleavage procedure and crude peptide was

obtained as a yellow powder. Following HPLC purification, 0.0094 mmol, 0.0117 g, 9.4%

yield. MS (ESI) m/z 1284.3 (M+K-2H) - (calc. 1283.4), m/z 1246.3 (M-H)− (calc. 1245.4),

m/z 622.24 (M-2H)2− (calc. 622.22).

HO-EYIQG-4T-GQIYE-OH: Solid-supportedWang-EYIQG-NH2 peptide N-acylated

with 5-bromothiophene-2-carboxylic acid was prepared (0.2 mmol). The peptide was cou-
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pled with 5,5′-bis-trimethylstannyl-[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence

of Pd(PPh3)4 (0.0080 mmol, 0.0093 g) using the general on-resin Stille coupling procedure

for 20 hours. Resin was then subjected to the general cleavage procedure and crude peptide

was obtained as a yellow powder. Following HPLC purification, 0.0064 mmol, 0.0102 g, 6.4%

yield. MS (ESI) m/z 1598.9 (M-H)− (calc. 1597.5), m/z 798.52 (M-2H)2− (calc. 798.25),

m/z 532.23 (M-3H)3− (calc. 531.83).

HO-GFGFD-4T-DFGFG-OH: Solid-supportedWang-GFGFD-NH2 peptide N-acylated

with 5-bromothiophene-2-carboxylic acid was prepared (0.2 mmol). The peptide was cou-

pled with 5,5′-bis-trimethylstannyl-[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence

of Pd(PPh3)4 (0.0080 mmol, 0.0093 g) using the general on-resin Stille coupling procedure

for 20 hours. Resin was then subjected to the general cleavage procedure and crude peptide

was obtained as a yellow powder. Following HPLC purification, 0.0078 mmol, 0.0114 g, 7.8%

yield. MS (ESI) m/z 1464.7 (M-H)− (calc. 1463.4), m/z 731.54 (M-2H)2− (calc. 731.18).

1.8.3 Round 2

HO-DGG-4T-GGD-OH: Prepared according to the protocol reported before.28

HO-ESA-4T-ASE-OH: Solid-supported Wang-ESA-NH2 peptide N-acylated with 5-

bromothiophene-2-carboxylic acid was prepared (0.2 mmol). The peptide was coupled with

5,5′-bis-trimethylstannyl-[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence of Pd(PPh3)4

(0.0080 mmol, 0.0093 g) using the general on-resin Stille coupling procedure for 20 hours.

Resin was then subjected to the general cleavage procedure and crude peptide was obtained

as a yellow powder. Following HPLC purification, 0.0092 mmol, 0.0091 g, 9.2% yield. MS

(ESI) m/z 991.29 (M-H)− (calc. 991.17), m/z 495.20 (M-2H)2− (calc. 495.09).

HO-DGA-4T-AGD-OH: Solid-supported Wang-DGA-NH2 peptide N-acylated with

5-bromothiophene-2-carboxylic acid was prepared (0.2 mmol). The peptide was coupled

with 5,5′-bis-trimethylstannyl-[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence of

Pd(PPh3)4 (0.0080 mmol, 0.0093 g) using the general on-resin Stille coupling procedure for
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20 hours. Resin was then subjected to the general cleavage procedure and crude peptide

was obtained as a yellow powder. Following HPLC purification, 0.0176 mmol, 0.0159 g, 18%

yield. MS (ESI) m/z 903.09 (M-H)− (calc. 903.12), m/z 451.10 (M-2H)2− (calc. 451.06).

HO-ETGG-4T-GGTE-OH: Solid-supported Wang-ETGG-NH2 peptide N-acylated

with 5-bromothiophene-2-carboxylic acid was prepared (0.2 mmol). The peptide was cou-

pled with 5,5′-bis-trimethylstannyl-[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence

of Pd(PPh3)4 (0.0080 mmol, 0.0093 g) using the general on-resin Stille coupling procedure

for 20 hours. Resin was then subjected to the general cleavage procedure and crude peptide

was obtained as a yellow powder. Following HPLC purification, 0.0112 mmol, 0.0124 g, 11%

yield. MS (ESI) m/z 552.32 (M-2H)2− (calc. 552.11).

HO-DANN-4T-NNAD-OH: Solid-supported Wang-DANN-NH2 peptide N-acylated

with 5-bromothiophene-2-carboxylic acid was prepared (0.2 mmol). The peptide was coupled

with 5,5′-bis-trimethylstannyl-[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence of

Pd(PPh3)4 (0.0080 mmol, 0.0093 g) using the general on-resin Stille coupling procedure for

20 hours. Resin was then subjected to the general cleavage procedure and crude peptide

was obtained as a yellow powder. Following HPLC purification, 0.0118 mmol, 0.0147 g, 12%

yield. MS (ESI) m/z 622.14 (M-2H)2− (calc. 622.17).

HO-DLAG-4T-GALD-OH: Solid-supportedWang-DLAG-NH2 peptide N-acylated with

5-bromothiophene-2-carboxylic acid was prepared (0.2 mmol). The peptide was coupled

with 5,5′-bis-trimethylstannyl-[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence of

Pd(PPh3)4 (0.0080 mmol, 0.0093 g) using the general on-resin Stille coupling procedure for

20 hours. Resin was then subjected to the general cleavage procedure and crude peptide

was obtained as a yellow powder. Following HPLC purification, 0.0274 mmol, 0.0311 g, 27%

yield. MS (ESI) m/z 1695.6 (3M-2H)2− (calc. 1694.4), m/z 1129.5 (M-H)− (calc. 1129.3),

m/z 564.36 (M-2H)2− (calc. 564.14).

HO-DDDAA-4T-AADDD-OH: Solid-supportedWang-DDDAA-NH2 peptide N-acylated

with 5-bromothiophene-2-carboxylic acid was prepared (0.2 mmol). The peptide was cou-
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pled with 5,5′-bis-trimethylstannyl-[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence

of Pd(PPh3)4 (0.0080 mmol, 0.0093 g) using the general on-resin Stille coupling procedure

for 20 hours. Resin was then subjected to the general cleavage procedure and crude peptide

was obtained as a yellow powder. Following HPLC purification, 0.0124 mmol, 0.0172 g, 12%

yield. MS (ESI) m/z 695.34 (M-2H)2− (calc. 695.13), m/z 463.24 (M-3H)3− (calc. 463.08).

HO-AEVGA-4T-AGVEA-OH: Solid-supportedWang-AEVGA-NH2 peptide N-acylated

with 5-bromothiophene-2-carboxylic acid was prepared (0.2 mmol). The peptide was cou-

pled with 5,5′-bis-trimethylstannyl-[2,2′]-bithiophene (0.010 mmol, 0.049 g) in the presence

of Pd(PPh3)4 (0.0080 mmol, 0.0093 g) using the general on-resin Stille coupling procedure

for 20 hours. Resin was then subjected to the general cleavage procedure and crude peptide

was obtained as a yellow powder. Following HPLC purification, 0.0282 mmol, 0.0359 g, 28%

yield. MS (ESI) m/z 1271.4 (M-H)− (calc. 1271.7), m/z 635.65 (M-2H)2− (calc. 635.18).

1.9 Safety comment

There were no unexpected or unusual safety hazards encountered.
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1.10 ESI Spectra

DG_4T_48 #3-75 RT: 0.03-1.00 AV: 73 NL: 1.80E4
T: ITMS - c ESI Full ms [150.00-2000.00]
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Figure S9: ESI- of HO-DG-4T-GD-OH.

VD_4T_37 #3-76 RT: 0.02-0.99 AV: 74 NL: 3.81E4
T: ITMS - c ESI Full ms [150.00-2000.00]
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Figure S10: ESI- of HO-VD-4T-DV-OH.
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EV_4T_57 #4-82 RT: 0.04-1.00 AV: 79 NL: 1.34E5
T: ITMS - c ESI Full ms [150.00-2000.00]
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Figure S11: ESI- of HO-EV-4T-VE-OH.

VEF_4T #2-85 RT: 0.01-0.99 AV: 84 NL: 1.40E5
T: ITMS - c ESI Full ms [150.00-2000.00]
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Figure S12: ESI- of HO-VEF-4T-FEV-OH.
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AAD_4T #1-82 RT: 0.00-0.99 AV: 82 NL: 1.66E4
T: ITMS - c ESI Full ms [150.00-2000.00]
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Figure S13: ESI- of HO-AAD-4T-DAA-OH.

DVAA_4T #1-43 RT: 0.00-0.50 AV: 43 NL: 1.09E5
T: ITMS - c ESI Full ms [150.00-2000.00]
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Figure S14: ESI- of HO-DVAA-4T-AAVD-OH.
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DVAG_4T #1-42 RT: 0.00-0.50 AV: 42 NL: 1.56E4
T: ITMS - c ESI Full ms [150.00-2000.00]
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Figure S15: ESI- of HO-DVAG-4T-GAVD-OH.

AAED_4T_200826103915 #12-38 RT: 0.18-0.51 AV: 27 NL: 5.23E3
T: ITMS - c ESI Full ms [150.00-2000.00]
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Figure S16: ESI- of HO-AAED-4T-DEAA-OH.

55



VEFAG_4T #2-43 RT: 0.01-0.51 AV: 42 NL: 1.60E4
T: ITMS - c ESI Full ms [150.00-2000.00]
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Figure S17: ESI- of HO-VEFAG-4T-GAFEV-OH.

VEVEV_4T_VEVEV_34 #2-82 RT: 0.01-0.98 AV: 81 NL: 3.67E4
T: ITMS - c ESI Full ms [150.00-2000.00]
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Figure S18: ESI- of HO-VEVEV-4T-VEVEV-OH.

56



DT_4T #3-84 RT: 0.02-0.99 AV: 82 NL: 2.81E4
T: ITMS - c ESI Full ms [150.00-2000.00]
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Figure S19: ESI- of HO-DT-4T-TD-OH.

EN_4T_48_201123201743 #2-34 RT: 0.01-0.51 AV: 33 NL: 6.26E2
T: ITMS - c ESI Full ms [150.00-2000.00]
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Figure S20: ESI- of HO-EN-4T-NE-OH.
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DSG-4T #2-42 RT: 0.01-0.50 AV: 41 NL: 1.47E4
T: ITMS - c ESI Full ms [150.00-2000.00]
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Figure S21: ESI- of HO-DSG-4T-GSD-OH.

SSD-4T #2-42 RT: 0.01-0.50 AV: 41 NL: 1.39E4
T: ITMS - c ESI Full ms [150.00-2000.00]

200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
el

at
iv

e 
Ab

un
da

nc
e

497.02

488.01

515.97

478.99325.07
549.93

444.44
409.95283.14 1108.94 1215.68994.61 1306.02 1391.61686.80 1544.01920.22 1488.98594.06 1650.29880.28 1719.86 1769.70722.21352.34 784.15 1830.76240.81 1916.86 1968.25

Figure S22: ESI- of HO-SSD-4T-DSS-OH.
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DGL_4T #2-44 RT: 0.01-0.51 AV: 43 NL: 9.72E4
T: ITMS - c ESI Full ms [150.00-2000.00]
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Figure S23: ESI- of HO-DGL-4T-LGD-OH.

DNDN_4T_4 #2-43 RT: 0.01-0.51 AV: 42 NL: 4.10E3
T: ITMS - c ESI Full ms [150.00-2000.00]
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Figure S24: ESI- of HO-DNDN-4T-NDND-OH.
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IDSV_4T #3-44 RT: 0.02-0.51 AV: 42 NL: 6.22E4
T: ITMS - c ESI Full ms [150.00-2000.00]
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Figure S25: ESI- of HO-IDSV-4T-VSDI-OH.

EYIQG_4T #17-40 RT: 0.22-0.50 AV: 24 NL: 3.48E3
T: ITMS - c ESI Full ms [150.00-2000.00]
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Figure S26: ESI- of HO-EYIQG-4T-GQIYE-OH.
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GFGFD_4T #1-43 RT: 0.00-0.50 AV: 43 NL: 8.30E4
T: ITMS - c ESI Full ms [150.00-2000.00]
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Figure S27: ESI- of HO-GFGFD-4T-DFGFG-OH.

ESA_4T #8-81 RT: 0.09-0.98 AV: 74 NL: 6.18E4
T: ITMS - c ESI Full ms [100.00-2000.00]
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Figure S28: ESI- of HO-ESA-4T-ASE-OH.
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DGA_4T #1-81 RT: 0.00-0.98 AV: 81 NL: 1.33E4
T: ITMS - c ESI Full ms [100.00-2000.00]
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Figure S29: ESI- of HO-DGA-4T-AGD-OH.

ETGG_210330204805 #2-83 RT: 0.01-1.00 AV: 82 NL: 1.54E4
T: ITMS - c ESI Full ms [100.00-2000.00]
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Figure S30: ESI- of HO-ETGG-4T-GGTE-OH.
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DANN_4T_1_210317234054 #14 RT: 0.22 AV: 1 NL: 5.15E3
T: ITMS - c ESI Full ms [150.00-2000.00]
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Figure S31: ESI- of HO-DANN-4T-NNAD-OH.

DLAG_4T #1-84 RT: 0.00-0.99 AV: 84 NL: 1.83E5
T: ITMS - c ESI Full ms [150.00-2000.00]
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Figure S32: ESI- of HO-DLAG-4T-GALD-OH.
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DDDAA_1a #3-83 RT: 0.02-1.00 AV: 81 NL: 2.03E4
T: ITMS - c ESI Full ms [100.00-2000.00]
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Figure S33: ESI- of HO-DDDAA-4T-AADDD-OH.

AEVGA #6-83 RT: 0.06-1.00 AV: 78 NL: 5.78E4
T: ITMS - c ESI Full ms [100.00-2000.00]
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Figure S34: ESI- of HO-AEVGA-4T-AGVEA-OH.
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1.11 Analytical HPLC Traces

Figure S35: Analytical HPLC trace of HO-DG-4T-GD-OH monitoring 420 nm (top) and
260 nm (bottom).

Figure S36: Analytical HPLC trace of HO-VD-4T-DV-OH monitoring 420 nm (top) and 260
nm (bottom).
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Figure S37: Analytical HPLC trace of HO-EV-4T-VE-OH monitoring 420 nm (top) and 260
nm (bottom).

Figure S38: Analytical HPLC trace of HO-VEF-4T-FEV-OH monitoring 420 nm (top) and
260 nm (bottom).
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Figure S39: Analytical HPLC trace of HO-AAD-4T-DAA-OH monitoring 420 nm (top) and
260 nm (bottom).

Figure S40: Analytical HPLC trace of HO-DVAA-4T-AAVD-OH monitoring 420 nm (top)
and 260 nm (bottom).
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Figure S41: Analytical HPLC trace of HO-DVAG-4T-GAVD-OH monitoring 420 nm (top)
and 260 nm (bottom).

Figure S42: Analytical HPLC trace of HO-AAED-4T-DEAA-OH monitoring 420 nm (top)
and 260 nm (bottom).
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Figure S43: Analytical HPLC trace of HO-VEFAG-4T-GAFEV-OH monitoring 420 nm (top)
and 260 nm (bottom).

Figure S44: Analytical HPLC trace of HO-VEVEV-4T-VEVEV-OH monitoring 420 nm
(top) and 260 nm (bottom).
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Figure S45: Analytical HPLC trace of HO-DT-4T-TD-OH monitoring 420 nm (top) and 260
nm (bottom).

Figure S46: Analytical HPLC trace of HO-EN-4T-NE-OH monitoring 420 nm (top) and 260
nm (bottom).
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Figure S47: Analytical HPLC trace of HO-DSG-4T-GSD-OH monitoring 420 nm (top) and
260 nm (bottom).

Figure S48: Analytical HPLC trace of HO-SSD-4T-DSS-OH monitoring 420 nm (top) and
260 nm (bottom).
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Figure S49: Analytical HPLC trace of HO-DGL-4T-LGD-OH monitoring 420 nm (top) and
260 nm (bottom).

Figure S50: Analytical HPLC trace of HO-DNDN-4T-NDND-OH monitoring 420 nm (top)
and 260 nm (bottom).
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Figure S51: Analytical HPLC trace of HO-IDSV-4T-VSDI-OH monitoring 420 nm (top) and
260 nm (bottom).

Figure S52: Analytical HPLC trace of HO-EYIQG-4T-GQIYE-OH monitoring 420 nm (top)
and 260 nm (bottom).
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Figure S53: Analytical HPLC trace of HO-GFGFD-4T-DFGFG-OH monitoring 420 nm
(top) and 260 nm (bottom).

Figure S54: Analytical HPLC trace of HO-ESA-4T-ASE-OH monitoring 420 nm (top) and
260 nm (bottom).
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Figure S55: Analytical HPLC trace of HO-DGA-4T-AGD-OH monitoring 420 nm (top) and
260 nm (bottom).

Figure S56: Analytical HPLC trace of HO-ETGG-4T-GGTE-OH monitoring 420 nm (top)
and 260 nm (bottom).
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Figure S57: Analytical HPLC trace of HO-DANN-4T-NNAD-OH monitoring 420 nm (top)
and 260 nm (bottom).

Figure S58: Analytical HPLC trace of HO-DLAG-4T-GALD-OH monitoring 420 nm (top)
and 260 nm (bottom).
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Figure S59: Analytical HPLC trace of HO-DDDAA-4T-AADDD-OH monitoring 420 nm
(top) and 260 nm (bottom).

Figure S60: Analytical HPLC trace of HO-AEVGA-4T-AGVEA-OH monitoring 420 nm
(top) and 260 nm (bottom).
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