	Table 51 Crystanographic data					
Compound	1	2	3	4		
Empirical formula	$C_{30}H_{22}CoN_5O_{6.50}$	$C_{36}H_{30}Co_{3}N_{6}O_{18}$	$C_{102}H_{84}Cl_2Co_4N_{28}O_{17}$	$\mathrm{C_{27}H_{21}CoN_7O_5}$		
Formula weight	615.46	1011.45	2280.59	582.44		
Crystal system	Trigonal	Monoclinic	Monoclinic	Monoclinic		
Space group	R-3	P2(1)/c	P2(1)/c	C2/c		
a(Å)	26.658(8)	7.565(3)	13.850(3)	29.174(10)		
$b(\text{\AA})$	26.658(8)	29.760(10)	13.682(3)	13.803(4)		
$c(\text{\AA})$	20.810(9)	17.084(6)	26.863(7)	13.380(4)		
α(°)	90	90	90	90		
β(°)	90	101.521(4)	97.757(4)	112.762(5)		
γ(°)	120	90	90	90		
$V(\text{\AA}^3)$	12807(9)	3769(2)	5044(2)	4969(3)		
Ζ	18	4	2	8		
$D_{\text{calcd}}(g \cdot \text{cm}^{-3})$	1.436	1.783	1.502	1.557		
μ(mm ⁻¹)	0.657	1.397	0.782	0.746		
R _{int}	0.0416	0.0634	0.0368	0.0315		
Final R indicaes	$R_1 = 0.0419$	$R_1 = 0.0397 \ wR_2$	R1=0.0594, wR2 =	$R_1 = 0.0465$		
[I>2σ(I)]	$wR_2 = 0.1134$	= 0.0989	0.1678	$wR_2 = 0.1327$		
R indices(all data)	$R_1 = 0.0443$	$R_1 = 0.0480$	R1=0.0662, wR2 =	$R_1 = 0.0507$		
	$wR_2 = 0.1155$	$wR_2 = 0.1035$	0.1734	$wR_2 = 0.1376$		
Goof	1.024	1.005	1.085	0.913		
${}^{a}R_{1} = \sum F_{0} - F_{c} / \sum F_{0} , wR = \{\sum [w(F_{0}^{2} - F_{c}^{2})^{2}] / [\sum w(F_{0}^{2})^{2}]\}^{1/2}$						

Table S1 Crystallographic data

 Table S2
 Selected bond lengths(Å)and bond angles(°)of compound 1

Co(1)-O(4A)	2.0181(15)	Co(1)-O(3B)	2.0262(14)	Co(1)-O	(2)	2.0515(14)
Co(1)-N(3)	2.1306(16)	Co(1)-N(1)	2.1688(17)			
O(4A)-Co(1)-O	(3B)	120.04	(6)	O(4A)-Co(1)-O	(2)	90.55((6)
O(3B)-Co(1)-O	(2)	149.03	5(5)	O(4A)-Co(1)-N	(3)	93.80((6)
O(3B)-Co(1)-N	(3)	90.62(6)	O(2)-Co(1)-N(3	3)	92.14((6)
O(4A)-Co(1)-N	(1)	86.80(6)	O(3B)-Co(1)-N	(1)	86.81((6)
O(2)-Co(1)-N(1)	90.47(6)	N(3)-Co(1)-N(1)	177.3	l(6)

Symmetry Code:A, -y-1/3,x-y+1/3,z+1/3; B, y-1/3,-x+y-2/3,-z+1/3

Co(1)-O(8)	2.0272	(17)	Co(1)-O(14)	2.039(2)	Co(1)-	0(13)	2.045(2)
Co(1)-O(1)	2.0945	(17)	Co(1)-N(6)	2.111(2)	Co(2)-	O(4A)	2.0578(19)
Co(2)-O(9)	2.0668	(17)	Co(2)-O(7B)	2.0757(16)	Co(2)-]	N(4C)	2.1329(19)
Co(2)-O(2B)	2.1475	(19)	Co(3)-	2.0892(16)	Co(3)-	O(12)	2.0924(16)
			O(11D)				
Co(3)-O(6E)	2.1213	(16)	Co(3)-N(5F)	2.1386(19)	Co(3)-	O(15)	2.1400(19)
Co(3)-O(6G)	2.1667	(17)					
O(8)-Co(1)-O(1	4)	90.51(8	8)	O(8)-Co(1)-O(13)	86.43())
O(14)-Co(1)-O((13)	174.20	(11)	O(8)-Co(1)-O(1)	163.82	(7)
O(14)-Co(1)-O((1)	88.43(7)	O(13)-Co(1)-O	(1)	93.14(8)
O(8)-Co(1)-N(6	5)	99.71(8	8)	O(14)-Co(1)-N	(6)	99.42(10)
O(13)-Co(1)-N((6)	85.96(11)	O(1)-Co(1)-N(5)	96.39(7)
O(4A)-Co(2)-O	(9)	90.85(8	8)	O(4A)-Co(2)-C	O (7B)	86.98(8)
O(9)-Co(2)-O(7	'B)	176.99	(7)	O(4A)-Co(2)-N	I(4C)	105.73	(8)
O(9)-Co(2)-N(4	IC)	89.18(7)	O(7B)-Co(2)-N	(4C)	89.40(7)
O(4A)-Co(2)-O	(2B)	157.18	(7)	O(9)-Co(2)-O(2)	2B)	91.08(7)
O(7B)-Co(2)-O	(2B)	91.73(7)	N(4C)-Co(2)-C	(2B)	97.03(8)
O(11D)-Co(3)-0	0(12)	98.50(′	7)	O(11D)-Co(3)-	O(6E)	92.70(7)
O(12)-Co(3)-O((6E)	168.79	(6)	O(11D)-Co(3)-	N(5F)	87.76(7)
O(12)-Co(3)-N((5F)	87.34(7)	O(6E)-Co(3)-N	(5F)	93.60(7)
O(11D)-Co(3)-0	O(15)	90.42(7)	O(12)-Co(3)-O	(15)	91.36(7)
O(6E)-Co(3)-O	(15)	88.07(′	7)	N(5F)-Co(3)-O	(15)	177.59	(8)
O(11D)-Co(3)-0	O(6G)	169.18	(6)	O(12)-Co(3)-O	(6G)	92.32(7)
O(6E)-Co(3)-O	(6G)	76.49(′	7)	N(5F)-Co(3)-O	(6G)	92.38(7)
O(15)-Co(3)-O((6G)	89.70(7)				

Table S3 Selected bond lengths(Å)and bond angles(°)of compound 2

Symmetry Code: A, x-1,y,z-1; B, x-1,-y+1/2,z-1/2; C, -x+1,-y,-z+1; D, -x+2,-y+1,-z+1; E, -x+3,y+1/2,-z+3/2; F, x+1,-y+1/2,z+1/2; G, x,-y+1/2,z-1/2.

Table S4 Selected bond lengths(Å)and bond angles(°)of compound 3							
Co(1)-O(5A) 2.002	(3) Co(1)-O(1B)	2.039(3) Co(1)-N(12) 2.157(3)				
Co(1)-N(11C) 2.174	(3) $Co(1)-Cl(1)$	2.3647(12) Co(2)-O(6A) 2.010(3)				
Co(2)-O(4) 2.048	(3) $Co(2)-N(6)$	2.162(3) Co(2)-N(5C) 2.166(3)				
Co(2)-Cl(1) 2.383	9(12)						
O(5A)-Co(1)-O(1B)	150.23(11)	O(5A)-Co(1)-N(12)	90.34(12)				
O(1B)-Co(1)-N(12)	91.57(12)	O(5A)-Co(1)-N(11C)	90.46(12)				
O(1B)-Co(1)-N(11C)	86.75(12)	N(12)-Co(1)-N(11C)	177.85(12)				
O(5A)-Co(1)-Cl(1)	107.99(8)	O(1B)-Co(1)-Cl(1)	101.51(9)				
N(12)-Co(1)-Cl(1)	93.89(9)	N(11C)-Co(1)-Cl(1)	87.76(10)				
O(6A)-Co(2)-O(4)	152.28(11)	O(6A)-Co(2)-N(6)	90.38(12)				
O(4)-Co(2)-N(6)	92.96(12)	O(6A)-Co(2)-N(5C)	89.22(12)				
O(4)-Co(2)-N(5C)	87.09(12)	N(6)-Co(2)-N(5C)	179.23(14)				
O(6A)-Co(2)-Cl(1)	107.69(8)	O(4)-Co(2)-Cl(1)	99.83(9)				
N(6)-Co(2)-Cl(1)	89.99(9)	N(5C)-Co(2)-Cl(1)	90.75(10)				

Symmetry Code: A : -x,y-1/2,-z+1/2 ; B, x+1,y,z ; C, x,-y+3/2,z+1/2 ;

Table S5	Selected bond	lengths(Å)and bond	angles(°)o	f compound 4
					compound i

Тале	Table 55 Selected bond lengths(17)and bond angles()of compound 1						
Co(1)-O(2A)	1.987(2)	Co(1)-O(3)	2.0055(19)	Co(1)-O(4B)	2.027(2)		
Co(1)-N(4C)	2.161(2)	Co(1)-N(5)	2.173(2)				
O(2A)-Co(1)-O	D(3) 134.7	76(10)	O(2A)-Co(1)-	-O(4B) 97.13	(10)		
O(3)-Co(1)-O(4B) 128.1	0(10)	O(2A)-Co(1)-	-N(4C) 96.15	(9)		
O(3)-Co(1)-N(4C) 88.10)(8)	O(4B)-Co(1)-	N(4C) 87.38	(8)		
O(2A)-Co(1)-N	N(5) 86.29	9(9)	O(3)-Co(1)-N	(5) 91.62	(8)		
O(4B)-Co(1)-N	N(5) 90.31	(9)	N(4C)-Co(1)-	N(5) 176.83	3(9)		

Symmetry Code: A, -x+1/2,y+1/2,-z+3/2; B, -x+1/2,-y-1/2,-z+1; C, x+1/2,-y-1/2,z+1/2.

	CoNC-A	CoNC-B	Pt/C
E_{onset}/V	0.893	0.962	0.968
$E_{1/2}/V$	0.785	0.808	0.799
$J_{\rm L}/{ m mA}\cdot{ m cm}^{-2}$	5.46	5.29	5.09

Table S7. E_{onset} and $E_{1/2}$ of CoNC-B and the reported carbon nanomateria	ials
derived from some Co-MOFs in alkaline electrolyte	

Co-MOFs	Onset potentials (V)	Half Wave potential (V)	Ref.
[Co ₃ (tpt) ₂ (Hbpt) ₃]·0.5DMDP	0.962	0.808	This work
Co-doped ZIF-8	0.93	0.80	34
CPM-24	-	0.76	50

Co ^{II} (pybz) ₂ ·2DMF	0.94	0.81	51
[Co ₂ (µ ₃ -OH)(bib)(bpt)]·H ₂ O	0904	0.795	70
$[Co_3(\mu_2-OH)_4(I)_2] \cdot 2H_2O$	0.95	0.80	74
[Co(im) ₄ ·DMA]	0.83	0.77	75
Co-Ade-MOFs	0.91	0.81	76

Fig. S1 Experimental X-ray powder pattern and simulated powder pattern based on the results from single-crystal X-ray diffraction for compounds 1(a),2(b),3(c) and 4(d)

Figure.S2. IR of compound 1

Figure.S3. IR of compound 2

Figure.S5. IR of compound 4

Fig. S6 The TG curve of compounds 1-4 under N_2 atmosphere at a heating rate of 10 K \cdot min⁻¹.

Fig. S7. (a) Powder XRD patterns (a) and Raman (λ_{ex} = 532 nm) spectra (b) of CoNC-A and CoNC-B

Fig. S8. (a)N₂ adsorption and desorption isotherms for CoNC-A and CoNC-B materials. (b) Corresponding pore size distribution plots.

Fig. S9 (a) the EIS results. Nyquist plots recorded at 0.75 V (vs Ag/AgCl). CV scans for the CoNC-A (b) and CoNC-B (c). (d) Plot of the current density versus scan rate for the electrocatalysts.

Fig. S10(a) LSV curves (5mv/s) of CoNC-B at various rotating speeds in N_2 and O_2 -saturated 0.1 M KOH. (b) LSV curves (5 mV/s) of CoNC-B before and after 1000 potential cycles in O_2 -saturated 0.1 M KOH solution.at a RDE rotation rate of 1600 rpm.

1. Calculating the electron transfer number (n).

The electron transfer numbers (n) were determined by the Koutecky-Levich equation:

$$\frac{1}{J} = \frac{1}{J_L} + \frac{1}{J_K} = \frac{1}{B\omega^{\frac{1}{2}}} + \frac{1}{J_K}$$
$$B = 0.62 \text{nFC}_0 D_0^{\frac{2}{3}} V^{-\frac{1}{6}}$$

Where J is the measured current density, J_K and J_L are the kinetic and limiting current densities, ω is the angular velocity of the disk, n is the overall number of electrons transferred in oxygen reduction, F is the Faraday constant (96485 C·mol⁻¹), C₀ is the bulk concentration of O₂ (1.2 × 10⁻⁶ mol·cm⁻³), D₀ is the diffusion coefficient of O₂ in 0.1 M KOH (1.9 × 10⁻⁵ cm²·s⁻¹), and V is the kinematic viscosity of the electrolyte (0.01 cm²·s⁻¹), and k is the electron transfer rate constant.

The electron transfer number (n) were calculated by the results of the rotating ring-disk electrode (RRDE) test with the following equations:

$$n = 4 \times \frac{I_D}{I_D + \frac{I_R}{N}}$$

Where I_D is the disk current, IR is the ring current, and N is the ring collection efficiency and N=0.37.

2. The equation about the measured potentials converted to the reversible hydrogen electrode (RHE):

All the potentials in this work were converted into reference potential of reversible hydrogen electrode (RHE) by the conversion formula as follows:

RHE=E_{Ag/AgCl}+0.059pH+0.2224V-0.059 lg *a*(Cl⁻)

Where $E_{Ag/AgCl}$ represents potential which is measured by silver chloride electrode as reference electrode. 0.2224V is the standard electrode potential of silver chloride electrode at 25°C. The a(Cl) is the concentration of Cl⁻ in saturated silver chloride electrode (3.4M).