## Electronic Supplementary Information:

## Heteroleptic, polynuclear dysprosium(III)-carbamato complexes through in-situ carbon dioxide capture

Sören Schlittenhardt,<sup>a</sup> Eufemio Moreno Pineda,<sup>a,b</sup> and Mario Ruben<sup>a,c,d</sup>

a. Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany).

b. Depto. de Química-Física, Escuela de Química, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá.

c. Institut de Science et d'Ingénierie Supramoléculaires (ISIS, UMR 7006), CNRS-Université de Strasbourg, 8 allée Gaspard Monge BP 70028 67083 Strasbourg Cedex France (France).

d. Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany).

|          | Dy(1)  | Dy(2)  |
|----------|--------|--------|
| OP-8     | 31.517 | 32.639 |
| HPY-8    | 22.439 | 21.874 |
| HBY-8    | 12.374 | 13.777 |
| CU-8     | 11.376 | 7.759  |
| SAPR-8   | 4.848  | 1.813  |
| TDD-8    | 3.228  | 1.791  |
| JGBF-8   | 11.631 | 15.403 |
| JETBPY-8 | 25.579 | 25.919 |
| JBTPR-8  | 4.146  | 2.876  |
| BTPR-8   | 3.769  | 2.343  |
| JSD-8    | 3.923  | 4.778  |
| TT-8     | 12.072 | 8.251  |
| ETBPY-8  | 21.600 | 23.990 |

Table S1: Continuous Shape Measures for complex 1 obtained using Shape v. 2.1.

|          | Dy(1)  | Dy(2)  | Dy(3)  |
|----------|--------|--------|--------|
| OP-8     | 31.327 | 32.150 | 32.975 |
| HPY-8    | 22.405 | 21.249 | 20.891 |
| HBY-8    | 16.067 | 14.435 | 12.368 |
| CU-8     | 14.291 | 9.588  | 12.024 |
| SAPR-8   | 5.288  | 0.994  | 4.231  |
| TDD-8    | 2.976  | 2.338  | 3.106  |
| JGBF-8   | 12.219 | 13.195 | 11.526 |
| JETBPY-8 | 24.056 | 28.597 | 27.556 |
| JBTPR-8  | 2.969  | 2.457  | 2.942  |
| BTPR-8   | 2.847  | 2.273  | 2.620  |
| JSD-8    | 4.314  | 4.154  | 4.187  |
| TT-8     | 14.918 | 10.320 | 12.529 |
| ETBPY-8  | 22.372 | 24.043 | 23.276 |
|          |        |        |        |

Table S2: Continuous Shape Measures for complex **2** obtained using Shape v. 2.1.

Table S3: Continuous Shape Measures for complex **3** obtained using Shape v. 2.1.

|          | Dy(1)  | Dy(2)  | Dy(3)  |
|----------|--------|--------|--------|
| OP-8     | 31.866 | 32.274 | 32.341 |
| HPY-8    | 22.490 | 20.790 | 20.054 |
| HBY-8    | 15.309 | 14.887 | 14.665 |
| CU-8     | 12.494 | 9.819  | 12.805 |
| SAPR-8   | 4.361  | 0.997  | 4.665  |
| TDD-8    | 2.493  | 2.448  | 2.276  |
| JGBF-8   | 12.024 | 13.596 | 12.558 |
| JETBPY-8 | 24.379 | 28.690 | 27.733 |
| JBTPR-8  | 3.465  | 2.652  | 3.583  |
| BTPR-8   | 3.470  | 2.374  | 3.113  |
| JSD-8    | 3.860  | 4.430  | 3.717  |
| TT-8     | 13.272 | 10.531 | 13.266 |
| ETBPY-8  | 23.100 | 23.892 | 21.675 |

|                  | ∆E [cm⁻¹] | ∆E [K] | g <sub>x</sub> | g <sub>y</sub> | gz      |
|------------------|-----------|--------|----------------|----------------|---------|
| (1) Dy(1)        | 23.35     | 33.60  | 1.0417         | 6.5595         | 14.0246 |
| <b>(1)</b> Dy(2) | 42.18     | 60.69  | 0.0679         | 0.1846         | 19.5099 |
| (2) Dy(1)        | 91.86     | 132.16 | 0.0300         | 0.0596         | 19.7198 |
| <b>(2)</b> Dy(2) | 57.98     | 83.42  | 0.3206         | 0.4356         | 18.7902 |
| <b>(2)</b> Dy(3) | 85.79     | 123.43 | 0.1981         | 0.5220         | 18.9881 |
| (3) Dy(1)        | 97.27     | 139.95 | 0.0244         | 0.0447         | 19.6749 |
| <b>(3)</b> Dy(2) | 95.56     | 137.49 | 0.1099         | 0.2193         | 19.1709 |
| <b>(3)</b> Dy(3) | 93.04     | 133.86 | 0.0426         | 0.1239         | 19.2214 |

Table S4: Energy separation and g-factors for compounds (1), (2) and (3) obtained from CASSCF.

Table S5: Calculated dipolar interactions.

|                                    | (1)    | (2)    | (3)    |
|------------------------------------|--------|--------|--------|
| $J_1$ [cm <sup>-1</sup> ]          | -0.858 | -0.196 | -1.782 |
| J <sub>2</sub> [cm <sup>-1</sup> ] | -0.681 | -0.061 | -0.263 |
| J <sub>3</sub> [cm <sup>-1</sup> ] | -0.103 | -0.178 | -0.194 |
| J <sub>4</sub> [cm <sup>-1</sup> ] |        | -0.124 | -0.330 |



Fig. S1: Structure of 2-Hydroxy-3-methoxybenzaldehyde-N-methylimine



Fig. S2: Full structure of  $[Dy_4(O_2CN^iPr_2)_{10}(O-C_2H_4-OMe)_2]$  (1); Dy: green; O: red; N: blue; C: black; H omitted for clarity.



Fig. S3: Full structure of  $[Dy_6(O_2CN^iPr_2)_8(O-C_2H_4-OMe)_2(CO_3)_2(C_9O_2NH_{10})_4]$  (2); Dy: green; O: red; N: blue; C: black; H omitted for clarity.



Fig. S4: Full structure of  $[Dy_6(O_2CNBz_2)_8(O-C_2H_4-OMe)_2(CO_3)_2(C_9O_2NH_{10})_4]$  (3); Dy: green; O: red; N: blue; C: black; H omitted for clarity.



Fig. S5: Infrared transmission spectrum for compounds (1) , (2) and (3).



Fig. S6: Orientation of the magnetic z-axes in (1).



Fig. S7: Orientation of the magnetic z-axes in (2).



Fig. S8: Orientation of the magnetic z-axes in (3).