Supporting Information

Controlled di-lithiation enabled synthesis of phosphinesulfonamide ligands and implications in ethylene oligomerization

Nilesh R. Mote,^{†, #}Shahaji R. Gaikwad,^{†,#} Kishor V. Khopade,^{†, #} Rajesh G. Gonnade,[§] Samir H. Chikkali^{*,†,#}

[†]Polyolefin Laboratory, Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr.HomiBhabha Road, Pune-411008, India

#Academy of Scientific and Innovative Research (AcSIR), AnusandhanBhawan, 2, Rafi Marg, New Delhi-110001, India

§Center for Materials Characterization, CSIR-National Chemical Laboratory, Dr.HomiBhabha Road, Pune-411008, India.

Table of Contents

1. Experimental Section	S2
1.1. General methods and materials	S2
2. Synthesis of ligands	S3
2.1. Synthesis of <i>N</i> -(2-bromophenyl)-4-methylbenzenesulfonamide (1):	S3
2.2. Synthesis of 2-(bis(2-methoxyphenyl)phosphanyl)-4-methyl- <i>N</i> -phenylbenzenesulfonamide (L2A):	S7
2.3. Synthesis of <i>N</i> -(2-(bis(2-methoxyphenyl)phosphanyl)phenyl)-4- methylbenzenesulfonamide (L1A):	
2.4. Synthesis of <i>N</i> -(2-(diphenylphosphanyl)phenyl)-4-methylbenzenesulfona	nide (L1B):
2.5. Synthesis of 2-(diphenylphosphanyl)-4-methyl- <i>N</i> -phenylbenzenesulfonan	11de (L2B):
3.Synthesis of palladium complexes	S20
3.1. Palladium complex C1:	S20
3.2. Palladium complex C2:	S28
3.3. Palladium complex C3:	S35
3.4. Palladium complex C4:	S38
3.5. Palladium complex C5:	S43
3.6. Palladium complex C6:	S49
3.7. Palladium complex C7:	S51
4. Ethylene Oligomerization	S53
5. Characterization of ethylene oligomers:	

6. Catalyst stability study	
7. Crystal data	
8. References	S68

1. Experimental Section

1.1. General methods and materials

Unless noted otherwise, all manipulations were carried out under an inert atmosphere using standard Schlenk line techniques or glove box. Hexane and THF were distilled from sodium/benzophenone under argon atmosphere. DMSO, pyridine and methylene chloride were distilled from calcium-hydride and stored on activated molecular sieves. Other chemicals like [Pd(COD)MeCl], [Pd(TMEDA)Me₂] were synthesized by following known procedures.¹ NMR was recorded on Bruker 400 MHz, and 500 MHz instruments. Chemical shifts are referenced to external reference TMS (¹H and ¹³C). Coupling constants are given as absolute values. Multiplicities are given as follows s: singlet, d: doublet, t: triplet, m: multiplet. Mass spectra were recorded on Thermo scientific Q-Exactive mass spectrometer, the column specification is Hypersil gold C18 column 150 x 4.6 mm diameter 8 um particle size mobile phase used is 90% methanol + 10 % water + 0.1 % formic acid.IR spectra were recorded on Bruker ALPHA spectrometer. C, H and N analyses were carried out using PerkinElmer 2400 instrument. IR spectra were recorded on Bruker VERTEX 80 spectrophotometer. The samples were prepared as Nujol mull. GPC molecular weights were determined by using Viscoteck GPC, using VE 1122 pump equipped with Viscotek VE 3580 RI detector and Viscotek VE 3210 UV/Vis detector against polystyrene standard.

X-ray diffraction measurement for two ligands L1A, L1B and three Pd complexes C1, C2, and C3was carried out on a Bruker D8 VENTURE Kappa Duo PHOTON II CPAD diffractometer equipped with Incoatech multilayer mirrors optics. The intensity measurements were carried out with Mo micro-focus sealed tube diffraction source (MoK_{α}= 0.71073 Å) at 100(2) K temperature. The X-ray generator was operated at 50 kV and 1.4 mA. A preliminary set of cell constants and an orientation matrix were calculated from three sets of 36 frames.Data were collected with ω and φ scan width of 0.5° at different settings of φ , ω and 2 θ keeping the sample-to-detector distance fixed at 5.00 cm. The X-ray data collection was monitored by the APEX3 program (Bruker, 2016).² All the data were corrected for Lorentzian, polarization, and absorption effects using SAINT and

SADABS programs (Bruker, 2016). Using the APEX3 (Bruker) program suite, the structure was solved with the ShelXS-97 (Sheldrick, 2008)³ structure solution program, using direct methods. The model was refined with a version of ShelXL-2013 (Sheldrick, 2015)⁴using Least Squares minimization. All the hydrogen atoms were placed in a geometrically idealized position and constrained to ride on its parent atoms. An *ORTEP* III⁵ view of the compound was drawn with either 30% or 50% probability displacement ellipsoids, and H atoms are shown as small spheres of arbitrary radii. For compound **C2**,PLATON/SQUEEZE was used to correct the diffraction data for the contribution from disordered lattice solvent molecules. The solvent-accessible void volume per unit cell was 144 A³ (5%) and Electron Count/unit Cell was 38 e/A⁻³, estimated by PLATON.

2. Synthesis of ligands

2.1. Synthesis of N-(2-bromophenyl)-4-methylbenzenesulfonamide (1):

4-methylbenzenesulfonyl chloride (3.65 gm, 19.1 mmol) was dissolved in 50 mL DCM and the flask was maintained at 0 °C. In another round bottom flask, 2-Bromoaniline (1.97 mL, 17.4 mmol) was dissolved in 50 mL DCM and pyridine (2.81 mL, 34.8 mmol) was syringed. The solution of 2-Bromoaniline and pyridine was added drop wise to the solution of 4-methylbenzenesulfonyl chloride at 0 °C. Reaction mixture turns brown (from colorless), which was stirred for 18 hours at room temperature. 1N hydrochloric acid (150 mL) was added and organic layer was separated. Organic layer was washed with distilled water (150 mL) and then washed with brine solution (150 mL). DCM was evaporated and the product was purified by using column chromatography (DCM:Petroleum ether 30:70) in 81 % yield.

¹**H-NMR** (200 MHz in CDCl₃): δ = 7.64 (m, 3H, Ar-H), 7.40 (m, 1H, Ar-H), 7.26 (m, 1H, Ar-H), 7.21 (d, 2H, Ar-H, *J* = 8.3 Hz), 6.99 (s, 1H, NH), 6.96 (m, 1H, Ar-H), 2.36 (s, 3H, *p*-Me). ¹³**C-NMR**(125 MHz in CDCl₃): δ = 144.2 (Cq), 135.7 (Cq), 134.6 (Cq), 132.5, 129.6, 128.5, 127.2, 126.2, 122.5, 115.6 (Cq), 21.5. **IR** (**Nujol**) cm⁻¹= 1377 and 1276 (S=O), 3393

(C–H). **IR** (**Nujol**) cm⁻¹= 1379 and 1159 (S=O), 3294 (C–H). **ESI-MS:** Calculated m/z for[C₁₃H₁₃BrNO₂S]⁺= 325.9850; found m/z = 325.9851 [M+H]⁺.

Figure S1: ¹H NMR spectrum of *N*-(2-bromophenyl)-4-methylbenzenesulfonamide (1).

Figure S3: DEPT-NMR spectrum of N-(2-bromophenyl)-4-methylbenzenesulfonamide (1) in CDCl₃.

Figure S4: IR spectrum of *N*-(2-bromophenyl)-4-methylbenzenesulfonamide (1) in Nujol.

Figure S5: ESI-MS spectrum of *N*-(2-bromophenyl)-4-methylbenzenesulfonamide (1) in methanol.

2.2. Synthesis of 2-(bis(2-methoxyphenyl)phosphanyl)-4-methyl-*N*-phenylbenzenesulfonamide (L2A):

N-(2-bromophenyl)-4-methylbenzenesulfonamide (0.5 gm, 1.53 mmol)was dissolved in THF (15 mL) and the reaction mixture was cooled to -41 °C. *n*-BuLi (2 M) (1.51 mL, 3.03 mmol) was added drop wise with constant stirring. Reaction mixture was stirred for 3 hours (during which the temperature rose to 0 °C)after which the temperature of the bath was lowered to -41 °C. Chlorobis(2-methoxyphenyl)phosphane (0.430 gm, 1.53 mmol) in THF (15 mL) was added drop wise to the above lithiated reaction mixture. The resultant content was further stirred overnight (16 hrs) at room temperature. THF was evaporated and the resultant residue was dissolved in DCM (40 mL), followed by addition of degassed water (20 mL). HCl in diethyl ether (2 M) (0.76 mL, 1.53 mmol) was added and the content was stirred for 10 minutes. Organic layer was extracted under argon and was dried on sodium sulfate. DCM was evaporated and crude solid was dried under vacuum for 2 hours. Compound was purified by precipitation in DCM:*n*-pentane at 0 °C in 80 % isolated yield.

³¹**P NMR** (500 MHz in CDCl₃): δ = -30.04.¹**H NMR** (500 MHz in CDCl₃): δ = 8.07 (m, 1H, Ar-H), 7.89 (m, 1H, Ar-H), 7.37 (m, 2H, Ar-H), 7.22- 7.25 (m, 3H, Ar-H/NH) 7.17 (m, 1H, Ar-H), 7.08 (m, 2H, Ar-H), 6.88 (m, 5H, Ar-H), 6.69 (m, 2H, Ar-H), 3.61 (s, 6H, *o*-OMe), 2.20 (s, 3H, *p*-Me).¹³**CNMR** (125 MHz in CDCl₃): δ = 160.7,142.6, 137.1, 136.4, 134, 130.5, 128.8, 124.8, 121.8, 121, 0.9, 110.3, 55.4, 21.3, **ESI-MS:** Calculated *m/z* for[C₂₇H₂₇O₄NPS]⁺= 492.1393 [M+H]⁺; found *m/z* = 492.1392 [M+H]⁺.

Figure S6: ³¹PNMR spectrum of ligand 2-(bis(2-methoxyphenyl)phosphaneyl)-4-methyl-*N*-phenylbenzenesulfonamide (**L2A**) in CDCl₃.

Figure S7: ¹H NMR spectrum of ligand 2-(bis(2-methoxyphenyl)phosphaneyl)-4-methyl-N-phenylbenzenesulfonamide (**L2A**) in CDCl₃.

Figure S8: ¹³C NMR spectrum of ligand 2-(bis(2-methoxyphenyl)phosphaneyl)-4-methyl-*N*-phenylbenzenesulfonamide (**L2A**) in CDCl₃.

FigureS9:IRofligandphenylbenzenesulfonamide (L2A) in Nujol.

2.3. Synthesis of *N*-(2-(bis(2-methoxyphenyl)phosphanyl)phenyl)-4methylbenzenesulfonamide (L1A):

N-(2-bromophenyl)-4-methylbenzenesulfonamide (2 gm, 6.13 mmol)was dissolved in THF (60 mL) and the reaction mixture was maintained at -84 °C. *n*-BuLi (2 M) (6.23 mL, 12.26 mmol) was added drop wise with constant stirring. Reaction mixture was stirred for 30 minutes at -84 °C. Next,chlorobis(2-methoxyphenyl)phosphane (1.71 gm, 6.13 mmol) in THF (60 mL) was added drop wise to the above lithiated reaction mixture at -84 °C. Reaction mixture was further stirred overnight (16 hrs) at room temperature. THF was evaporated and the resultant residue was dissolved in DCM (160 mL). Subsequently, degassed water (80 mL) and HCl in diethyl ether (2 M) (3.06 mL, 6.13 mmol) were added and the mixture was stirred for 10 minutes. Organic layer was extracted under argon and dried on sodium sulfate. DCM was evaporated and crude residue was dried under vacuum for 2 hours. Compound **L1A**was purified by crystallization in DCM:hexaneat 0 °C and was isolated in 85 % yield.

³¹**P NMR** (500 MHz in CDCl₃): $\delta = -47.46.^{1}$ **HNMR** (500 MHz in CDCl₃): $\delta = 8.16$ (m, 1H, Ar-H), 7.73 (m, 1H, Ar-H), 7.52 (m, 2H, Ar-H), 7.31 (m, 3H, Ar-H), 6.98 (m, 1H, Ar-H), 6.86 (m, 5H, Ar-H/NH), 6.75 (m, 2H, Ar-H), 6.49 (m, 2H, Ar-H), 3.69 (s, 6H, *o*-OMe), 2.18 (s, 3H, *p*-Me). ¹³**C NMR** (125 MHz in CDCl₃): $\delta = 160.7.160.6, 143.1, 141.4, 135.8, 135.7, 132.9, 130.3, 130.1, 129.2, 127.1, 126.4, 124.7, 122.8, 120.9, 110.1, 55.6, 21.4.$ **ESI-MS:**Calculated*m/z*for[C₂₇H₂₇O₄NPS]⁺ = 492.1393 [M+H]⁺; found*m/z*=492.1392 [M+H]⁺.

Figure S10: ³¹P NMR spectrum of ligand N-(2-(bis(2-methoxyphenyl)phosphaneyl)phenyl)-4-methylbenzenesulfonamide (**L1A**).

Figure S11: ¹H NMR spectrum of ligand N-(2-(bis(2-methoxyphenyl)phosphaneyl)phenyl)-4-methylbenzenesulfonamide (**L1A**).

Figure S12: ¹³C NMR spectrum of ligand *N*-(2-(bis(2-methoxyphenyl)phosphaneyl)phenyl)-4-methylbenzenesulfonamide (**L1A**).

Figure S13: ESI-MS of ligand N-(2-(bis(2-methoxyphenyl)phosphaneyl)phenyl)-4-methylbenzenesulfonamide (L1A).

Figure S14: IR spectrum of ligand N-(2-(bis(2-methoxyphenyl)phosphaneyl)phenyl)-4-methylbenzenesulfonamide (**L1A**) in Nujol.

Figure S15: Single crystal of ligand *N*-(2-(bis(2-methoxyphenyl)phosphaneyl)phenyl)-4-methylbenzenesulfonamide (**L1A**).[Thermal ellipsoids are drawn at 50% probability]

Identification code	L1A
Empirical formula	C27 H26 N O4 P S
Formula weight	491.52
Temperature	100(2) K
Wavelength	0.71073 Å

Table S1. Crystal data and structure refinement for (L1A).

Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 9.5013(4) Å	$\alpha = 73.562(2)^{\circ}$.	
	b = 10.9649(4) Å	$\beta = 70.075(2)^{\circ}.$	
	c = 13.6934(5) Å	$\gamma = 71.803(2)^{\circ}$.	
Volume	1248.98(9) Å ³		
Z	2		
Density (calculated)	1.307 Mg/m ³		
Absorption coefficient	0.227 mm ⁻¹		
F(000)	516		
Crystal size	0.200 x 0.170 x 0.030 m	m ³	
Theta range for data collection	1.994 to 30.800°.		
Index ranges	-12<=h<=13, -14<=k<=	-12<=h<=13, -14<=k<=15, -19<=l<=19	
Reflections collected	19104		
Independent reflections	7686 [R(int) = 0.0211]		
Completeness to theta = 25.242°	99.8 %		
Absorption correction	Semi-empirical from equ	uivalents	
Max. and min. transmission	0.993 and 0.956		
Refinement method	Full-matrix least-squares	s on F ²	
Data / restraints / parameters	7686 / 0 / 283		
Goodness-of-fit on F ²	1.030		
Final R indices [I>2sigma(I)]	R1 = 0.0473, wR2 = 0.1	235	
R indices (all data)	R1 = 0.0625, wR2 = 0.1	342	
Extinction coefficient	n/a		
Largest diff. peak and hole	0.558 and -0.557 e.Å ⁻³		

2.4. Synthesis of *N*-(2-(diphenylphosphanyl)phenyl)-4-methylbenzenesulfonamide (L1B):

N-(2-bromophenyl)-4-methylbenzenesulfonamide (1 gm, 3.06 mmol)was dissolved in THF (30 mL) and the content was cooled to -84 °C. *n*-BuLi (2 M) (3.06 mL, 6.13 mmol) was added drop wise with constant stirring. The reaction mixture was stirred for 30 minutes at -84 °C. Next, chlorodiphenylphosphane (0.56 mL, 3.06 mmol) was added drop wise to the above lithiated reaction mixture at -84 °C. This mixture was further stirred overnight (16 hours) at room temperature. THF was evaporated and the resultant residue was dissolved in DCM (60 mL). Subsequently, degassed water (30 mL) and HCl in diethyl ether (2 M) (1.53 mL, 3.06 mmol) was added and the mixture was stirred for 10 minutes. Organic layer was extracted under argon and dried on pre-dried sodium sulfate. Volatiles were stripped off and crude residue was dried under vacuum for 2 hours. Compound was purified by crystallization in DCM:hexaneat 0 °C and was isolated in 74 % yield.

³¹**P NMR** (500 MHz in CDCl₃): $\delta = -26.44.^{1}$ **H NMR** (500 MHz in CDCl₃): $\delta = 7.82$ (s, 1H, Ar-H), 7.74 (m, 1H, Ar-H), 7.49 (s, 2H, Ar-H), 7.33 (m, 3H, Ar-H/NH), 7.26 (m, 4H, Ar-H), 7.03(m, 5H, Ar-H), 6.97 (s, 2H, Ar-H), 6.88 (m, 1H, Ar-H), 2.29 (s, 3H, *p*-Me). ¹³**C NMR** (125 MHz in CDCl₃): $\delta = 143.5$, 135, 133.4, 133.1, 130.5, 129.3, 128.9, 128.7, 128.5, 125.1, 121, 21.5, **ESI-MS:** Calculated *m*/*z* for[C₂₅H₂₃NO₂PS]⁺432.1187; found *m*/*z* = 432.1175 [M+H]⁺. Calculated *m*/*z* for[C₂₅H₂₂NO₂PSNa]⁺= 454.1007; found m/z = 454.0990 [M+Na]⁺.

Figure S17: ¹H NMR spectrum of ligand N-(2-(diphenylphosphanyl)phenyl)-4-methylbenzenesulfonamide (**L1B**).

Figure S18: ¹³C NMR of ligand *N*-(2-(diphenylphosphanyl)phenyl)-4-methylbenzenesulfonamide (**L1B**).

Figure S19: ESI-MS of ligand *N*-(2-(diphenylphosphanyl)phenyl)-4-methylbenzenesulfonamide (L1B).

Figure S20: IR spectrum of ligand *N*-(2-(diphenylphosphanyl)phenyl)-4-methylbenzenesulfonamide (**L1B**) in Nujol.

Figure S21: Molecular structure of ligand *N*-(2-(diphenylphosphanyl)phenyl)-4-methylbenzenesulfonamide (**L-1a**).Thermal ellipsoids are drawn at 50% probability level.

Table 52.	Crystal dat	a and stru	icture refin	ement for	(LIB).

Identification code	L1B
Empirical formula	C25 H22 N O2 P S
Formula weight	431.46
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic

Space group	P-1	
Unit cell dimensions	a = 10.0641(6) Å	$\alpha = 76.414(2)^{\circ}.$
	b = 10.8548(6) Å	β= 81.176(2)°.
	c = 11.1095(6) Å	$\gamma = 65.105(2)^{\circ}.$
Volume	1068.02(11) Å ³	
Z	2	
Density (calculated)	1.342 Mg/m ³	
Absorption coefficient	0.249 mm ⁻¹	
F(000)	452	
Crystal size	0.190 x 0.110 x 0.070 mm ³	
Theta range for data collection	2.683 to 28.000°.	
Index ranges	-13<=h<=13, -14<=k<=14, -14<=l<=14	
Reflections collected	71397	
Independent reflections	5123 [R(int) = 0.0305]	
Completeness to theta = 25.242°	99.4 %	
Absorption correction	Semi-empirical from equivalent	nts
Max. and min. transmission	0.983 and 0.954	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	5123 / 0 / 276	
Goodness-of-fit on F ²	1.052	
Final R indices [I>2sigma(I)]	R1 = 0.0348, wR2 = 0.0852	
R indices (all data)	R1 = 0.0367, wR2 = 0.0865	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.176 and -0.330 e.Å ⁻³	

2.5. Synthesis of 2-(diphenylphosphanyl)-4-methyl-N-phenylbenzenesulfonamide (L2B):

N-(2-bromophenyl)-4-methylbenzenesulfonamide (0.5 gm, 1.53 mmol)was dissolved in THF (15 mL) and the content was cooled to -41 °C. *n*-BuLi (2 M) (1.53 mL, 3.06 mmol) was added drop wise with constant stirring. This mixture was stirred for 3 hours. Next, chlorodiphenylphosphane (0.28 mL, 1.53 mmol) was added drop wise to the above lithiated reaction mixture at -41 °C. The reaction mixture was further stirred overnight (16

hours) at room temperature. Volatiles were evaporated and the resultant residue was dissolved in DCM (40 mL). Subsequently, degassed water (20 mL) andHCl in diethyl ether (2 M) (0.76 mL, 1.53 mmol) was added and the mixture was stirred for 10 minutes. Organic layer was extracted under argon and dried on pre-dried sodium sulfate. DCM was evaporated and crude residue was dried under vacuum for 2 hours. The resultant solid was purified by crystallization in DCM:hexaneat 0 °C. The analytical data matches with reported similar ligands.⁶

³¹**P NMR** (500 MHz in CDCl₃): $\delta = -9$.

3.Synthesis of palladium complexes

3.1. Palladium complex C1:

Equimolar mixture of ligand L1A (0.100 gm, 0.20 mmol) and [(TMEDA)PdMe₂] (0.051gm, 0.20 mmol) was taken in a Schlenk tube and 5 mL pyridine was added. The reaction mixture was stirred at room temperature for 2 hours and volatiles were evaporated. Again, pyridine was added (5 mL), mixture was stirred and volatiles were evaporated. This procedure was repeated for three times and solid was dried under vacuum for 1 hour. The resultant solid was washed with diethyl ether (5 mL \approx 2) to obtain 91 % of anticipated complex C1.

³¹**P NMR** (400 MHz in CDCl₃): $\delta = 26.34$. ¹**H NMR** (400 MHz in CDCl₃): $\delta = 8.89$ (d, 2H, *J* = 4.88 Hz), 7.74 (t, 1H, *J* = 7.63 Hz), 7.63 (s, 1H), 7.46 (t, 2H, *J* = 7.63 Hz), 7.37 (m, 4H), 7.13 (t, 1H, *J* = 7.63 Hz), 6.99 (br. s, 2H), 6.92 (q, 2H, *J* = 7.93, 4.88 Hz), 6.85 (s, 2H), 6.79 (s, 1H), 6.72 (d, 2H, *J* = 7.32 Hz), 6.60 (m, 1H), 3.71 (s, 6H, *o*-OMe), 2.18 (s, 3H, *p*-OMe), 0.32 (s, 3H, Pd-Me). ¹³**C NMR** (100 MHz in CDCl₃): $\delta = 160.8$, 160.7, 151.2, 140.9, 139.7, 137.1, 135.2, 132.2, 131.5, 128.2, 127.1, 124.9, 124.3, 121.2, 121.1, 120.6, 120.5, 119.2, 117.8, 117.2, 111.2, 55.5, 21.2, -2.7. **ESI-MS:** Calculated *m*/*z* for [C₃₃H₃₄N₂O₄PPdS]⁺ = 612.0584 [(M-Py)+H]⁺; found *m*/*z* = 612.0593 [(M-Py)+H]⁺. **Elemental analysis (%):** Calculated for C₃₃H₃₃N₂O₄PPdS: C, 57.35; H, 4.81; N, 4.05; found: C, 57.94; H, 5.11; N, 3.90.

Figure S22: ³¹P NMR spectrum of complex C1 in CDCl₃.

Figure S24: ¹³CNMR spectrum of complex C1 in CDCl₃.

Figure S26: COSY-NMR spectrum of complex C1 in CDCl₃.

Figure S27: NOESY-NMR spectrum of complex C1 in CDCl₃.

Figure S28: Direct C-H correlation (HSQC) NMR spectrum of complexC1 in CDCl₃.

Figure S29: Long range C-H (HMBC) correlation NMR spectrum of complex C1 in CDCl₃.

Figure S30: IR spectrum of complex C1 in Nujol.

Figure S31: ESI-MS spectrum of complex C1 ($[M-Py+H]^+$ (top) and $[M+H]^+$ (bottom).

Figure S32: Molecular structure of complexC1. Thermal ellipsoids are drawn at 50% probability level.

Table S3. (Crystal	data	and	structure	refinemen	t for	C1 .
-------------	---------	------	-----	-----------	-----------	-------	-------------

Identification code	C1	
Empirical formula	C33 H33 N2 O4 P Pd S	
Formula weight	691.04	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2 ₁ /c	
Unit cell dimensions	a = 12.3236(13) Å	$\alpha = 90^{\circ}$.
	b = 18.867(2) Å	β= 105.039(4)°.
	c = 13.3975(15) Å	$\gamma = 90^{\circ}.$
Volume	3008.4(6) Å ³	
Z	4	
Density (calculated)	1.526 Mg/m ³	
Absorption coefficient	0.781 mm ⁻¹	
F(000)	1416	
Crystal size	0.190 x 0.030 x 0.020 mm ³	
Theta range for data collection	2.672 to 27.998°.	
Index ranges	-16<=h<=16, -24<=k<=24, -17<=l<=17	
Reflections collected	160280	
Independent reflections	7256 [R(int) = 0.0441]	
Completeness to theta = 25.242°	99.7 %	
Absorption correction	Semi-empirical from equivalen	ts
Max. and min. transmission	0.985 and 0.866	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	7256 / 0 / 383	

Goodness-of-fit on F ²	1.075
Final R indices [I>2sigma(I)]	R1 = 0.0237, wR2 = 0.0568
R indices (all data)	R1 = 0.0274, $wR2 = 0.0605$
Extinction coefficient	n/a
Largest diff. peak and hole	1.189 and -1.012 e.Å ⁻³

3.2. Palladium complex C2:

Equimolar mixture of ligand **L1B** (0.855 gm, 1.98 mmol)and [(TMEDA)PdMe₂] (0.500 gm, 1.98 mmol) was taken in a Schlenk tube and 8 mL pyridine was added. The content was stirred at room temperature for 3 hours and volatiles were evaporated. Next, pyridine (8 mL) was added, mixture was stirred and volatiles were evaporated. This procedure was repeated for 2 more times and the resultant solid was dried under vacuum for 4 hours. Finally, the anticipated compound was obtained in 92 % yield after washing with diethyl ether (3 * 5 mL) and drying.

³¹**P NMR** (400 MHz in CDCl₃): $\delta = 40.84$. ¹**H NMR** (400 MHz in CDCl₃): $\delta = 8.89$ (s, 2H, Ar-H). 7.78 (s, 2H, Ar-H), 7.37-7.44 (m, 12H, Ar-H), 7.31 (d, 2H, Ar-H), 7.22 (s, 1H, Ar-H), 6.83 (s, 1H, Ar-H), 6.72 (s, 1H, Ar-H), 6.65 (s, 2H, Ar-H), 2.15 (s, 3H, *p*-Me), 0.42 (s, 3H, Pd-Me). ¹³**C NMR** (100 MHz in CDCl₃): $\delta = 156.0,151, 137.4, 133.4, 133.3, 132.6, 130.4, 128.6, 128.4, 128.2, 126.7, 124.4, 122.7, 120.3, 21.2, -2.4.$ **ESI-MS:**Calculated*m/z*for[C₃₁H₃₀N₂O₂PPdS]⁺= 631.0795 [M+H]⁺; found*m/z*= 631.0795 [M+H]⁺.

Figure S33: ³¹P NMR spectrum of complex C2 in CDCl₃.

Figure S34: ¹HNMR spectrum of complex C2 in CDCl₃.

Figure S36: DEPT-NMR spectrum of complex C2 in CDCl₃.

Figure S38: HSQC-NMR spectrum of complex C2 in CDCl₃.

Figure S39: HMBC-NMR spectrum of complex C2 in CDCl₃.

Figure S40: NOESY-NMR spectrum of complex C2 in CDCl₃.

Figure S41: ESI-MS spectrum of complex C2.

Figure S42: IR spectrum of complex C2 in Nujol.

Figure S43: Molecular structure of complex C2.Thermal ellipsoids are drawn at 50% probability level.

Identification code	C2	
Empirical formula	C62 H58 N4 O4 P2 Pd2 S2	
Formula weight	1261.98	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 9.466(7) Å	$\alpha = 74.14(2)^{\circ}.$
	b = 13.978(11) Å	$\beta = 87.92(2)^{\circ}.$
	c = 22.863(18) Å	$\gamma = 85.66(2)^{\circ}.$
Volume	2901(4) Å ³	
Z	2	
Density (calculated)	1.445 Mg/m ³	
Absorption coefficient	0.797 mm ⁻¹	
F(000)	1288	
Crystal size	$0.240 \text{ x} 0.190 \text{ x} 0.030 \text{ mm}^3$	
Theta range for data collection	2.334 to 25.195°.	
Index ranges	-11<=h<=11, -16<=k<=16, -27<=l<=27	
Reflections collected	30943	
Independent reflections	10372 [R(int) = 0.0727]	
Completeness to theta = 25.195°	99.3 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.976 and 0.832	
Refinement method	Full-matrix least-squares on F ²	

 Table S4. Crystal data and structure refinement for C2.

Data / restraints / parameters	10372 / 0 / 689
Goodness-of-fit on F ²	1.137
Final R indices [I>2sigma(I)]	R1 = 0.0657, wR2 = 0.1566
R indices (all data)	R1 = 0.0959, wR2 = 0.1679
Extinction coefficient	n/a
Largest diff. peak and hole	1.138 and -1.230 e.Å ⁻³

3.3. Palladium complex C3:

Equimolar mixture of ligand L2A and [(TMEDA)PdMe₂] was taken in a Schlenk tube and 8 mL pyridine was added. The content was stirred at room temperature for 3 hours and the volatiles were evaporated. Subsequently, pyridine (8 mL) was added, mixture was stirred and volatiles were evaporated. This procedure was repeated for 2 more times and the resultant solid was dried under vacuum for 4 hours. The desired complex was obtained in 92 % yield after washing with diethyl ether and drying. Crystal suitable for single crystal X-ray analysis were obtained by slow evaporation of DCM solution of C3.

³¹**P** NMR (500 MHz in CDCl₃): $\delta = 22.86$. ¹HNMR (500 MHz in CDCl₃): $\delta = 8.85$ (s, 2H), 7.89 (s, 1H), 7.68 (s, 1H), 7.50 (s, 2H), 7.27-7.29 (m, 5H), 7.13-7.20 (m, 3H), 7.15 (s, 2H), 6.89 (s, 5H), 6.67 (s, 1H), 3.35 (s, 6H *o*-OMe), 2.25 (s, 3H *p*-Me), 0.04 (s, 3H Pd-Me).

6.11 LI

3

3.09 Ц

2

Figure S45: ¹H NMR spectrum of complex C3 in CDCl₃.

Ш

8

4.783.132.094.751.08

6

5 Chemical Shift (ppm)

2.07 1.001.332 L L L

9

10

2.92 Ц

0

Figure S46: Molecular structure of complex C3. Thermal ellipsoids are drawn at 50% probability level.

 Table S5. Crystal data and structure refinement for C3.

Identification code	C3		
Empirical formula	C33 H33 N2 O4 P Pd S		
Formula weight	691.04		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 9.959(2) Å	$\alpha = 91.745(8)^{\circ}.$	
	b = 11.496(3) Å	$\beta = 100.761(8)^{\circ}.$	
	c = 13.574(3) Å	$\gamma = 95.062(9)^{\circ}.$	
Volume	1519.0(6) Å ³		
Z	2		
Density (calculated)	1.511 Mg/m ³		
Absorption coefficient	0.773 mm ⁻¹		
F(000)	708		
Crystal size	$0.200 \text{ x} 0.170 \text{ x} 0.030 \text{ mm}^3$		
Theta range for data collection	2.614 to 27.997°.		
Index ranges	-13<=h<=13, -15<=k<=15, -17	<=l<=17	
Reflections collected	50137		
Independent reflections	7286 [R(int) = 0.0510]		
Completeness to theta = 25.242°	99.6 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.977 and 0.861		
Refinement method	Full-matrix least-squares on F ²		

Data / restraints / parameters	7286 / 0 / 383
Goodness-of-fit on F ²	1.062
Final R indices [I>2sigma(I)]	R1 = 0.0273, wR2 = 0.0689
R indices (all data)	R1 = 0.0318, wR2 = 0.0720
Extinction coefficient	n/a
Largest diff. peak and hole	1.065 and -0.631 e.Å ⁻³

3.4. Palladium complex C4:

Sodium salt of ligand L1A (0.100 gm, 0.198 mmol) and [(COD)PdMeCl] (0.052g, 0.198 mmol) were mixed in a Schlenk tube and 6 mL DCM was added along with 10 equivalent of DMSO. The content was stirred at room temperature for 2 hours and then passed through a bed of celite. Solvent was evaporated and the residue was washed with hexane. The resultant gray solid was dried for 2 to 3 hours under vacuum to obtain C4 in 66 % isolated yield.

³¹**P NMR** (500 MHz in CDCl₃): $\delta = 25.07$. ¹**H NMR** (500 MHz in CDCl₃): $\delta = 7.61$ (s, 1H, Ar-H). 7.42 (s, 3H, Ar-H), 7.11 (s, 3H, Ar-H), 6.88 (s, 3H, Ar-H), 6.76 (m, 5H, Ar-H), 6.62 (s, 1H, Ar-H), 3.65 (s, 6H, *o*-OMe), 2.70 (s, SMe₂ Excess of DMSO present), 2.18 (s, 3H, *p*-Me), 0.55 (s, 3H, Pd-Me). ¹³**C NMR** (125 MHz in CDCl₃): $\delta = 160.5, 153.3, 143, 139.7, 134.9, 132.3, 131.5, 129.2, 128.8, 128.4, 126.8, 121.3, 120.8, 120.6, 120.5, 120.1, 111.1, 55.4, 41.79, 21.19, -0.8.$ **ESI-MS:**Calculated*m*/*z*for[C₂₈H₂₉O₄NPPdS]⁺= 612.0584 [M-DMSO+H]⁺; found*m*/*z*= 612.0586 [M-DMSO+H]⁺.

Figure S48: ¹H NMR spectrum of complex C4 in CDCl₃.

Figure S51: COSY-NMR spectrum of complex C4 in CDCl₃.

Figure S52: NOESY-NMR spectrum of complex C4 in CDCl₃.

Figure S53: HSQC-NMR spectrum of complex C4 in CDCl₃.

Figure S54: HMBC-NMR spectrum of complex C4 in CDCl₃.

Figure S55: ESI-MS spectrum of complex C4.

3.5. Palladium complex C5:

Sodium salt of ligand L1A (0.250 gm, 0.48 mmol) and [(COD)PdMeCl] (0.129 gm, 0.48 mmol) was stirred at room temperature in acetonitrile (10 mL) for 10 minutes. AgBF₄ (0.094 gm, 0.48 mmol) was added in reaction mixture and the mixture was stirred for 10 minutes. Reaction mixture was passed through a bed of celite. After the evaporation of solvent, off white solid was obtained in 74 % isolated yield.

³¹**P NMR** (500 MHz in CDCl₃): $\delta = 29.01$. ¹**H NMR** (500 MHz in CDCl₃): $\delta = 7.6$ (s, 1H, Ar-H), 7.52 (s, 2H, Ar-H), 7.44 (s, 2H, Ar-H), 7.10 (s, 1H, Ar-H), 7.02 (s, 2H, Ar-H), 6.83-6.89 (m, 7H, Ar-H), 6.57, (s, 1H, Ar-H), 3.66 (s, 6H, *o*-OMe), 2.22 (s, 3H, *p*-Me), 2.10 (s, 3H, MeCN), 0.35 (s, 3H, Pd-Me). ¹³**C NMR** (125 MHz in CDCl₃): $\delta = 160.7$, 160.6, 141, 140, 135.4, 132.4, 132.1, 131.6, 128.4, 127, 123.8, 121, 120.6, 120.5, 119.1, 117.2, 111.1, 55.50,

31, 27.6, 21.3, -4.9. **ESI-MS:** Calculated m/z for[C₂₈H₂₉NO₄PPdS]⁺= 612.0584 [M-MeCN+H]⁺; found m/z = 612.0587 [M-MeCN+H]⁺.

Figure S58: ¹³CNMR spectrum of complex C5 in CDCl₃.

Figure S60: COSY-NMR spectrum of complex C5 in CDCl₃.

Figure S61: NOESY-NMR spectrum of complex C5 in CDCl₃.

Figure S62: HSQC-NMR spectrum of complex C5 in CDCl₃.

Figure S63: Long-range C-H correlation (HMBC) NMR spectrum of complex C5 in CDCl₃.

Figure S64: ESI-MS spectrum of complex C5 in acetonitrile.

Figure S65: IR spectrum of complex C5 in Nujol.

3.6. Palladium complex C6:

Ligand L1B (0.183 gm, 0.42 mmol) was treated with sodium hydride (0.011 gm, 0.50 mmol) in THF (6 mL) for 24 hours at room temperature. After evaporation of THF, the sodium salt of ligand L1B was suspended in DCM (12 mL) and [(DMSO)PdMeCl]₂ (0.100 gm, 0.42 mmol) was added. The reaction mixture was stirred at room temperature for 3 hours. Resulting gray solution was passed through a bed of celite under argon. Volatiles were evaporated in vacuum and the resultant residue was dried for 3 hours. The thus obtained residue was washed with hexane to obtain palladium complex in 70 % yield.

³¹**P** NMR (400 MHz in CDCl₃): $\delta = 40.64$. ¹H NMR (400 MHz in CDCl₃): $\delta = 7.57$ (s, 2H, Ar-H). 7.38-7.44 (m, 10H, Ar-H), 7.26 (s, 2H, Ar-H), 7.18 (s, 1H, Ar-H), 6.61 (m, 3H, Ar-H), 2.73 (s, 6H, SMe₂ excess of DMSO was observed), 2.22 (s, 3H, *p*-Me), 0.56 (s, 3H, Pd-Me). **ESI-MS:** Calculated *m*/*z* for[C₂₆H₂₅NO₂PPdS]⁺ = 552.0373 [M-DMSO+H]⁺; found *m*/*z* = 552.0373 [M-DMSO+H]⁺.

Figure S67: ¹H NMR spectrum of complex C6 in CDCl₃.

Figure S68: ESI-MS spectrum of complex C6 in CDCl₃.

3.7. Palladium complex C7:

Ligand **L1B** (0.100 gm, 0.23 mmol) was treated with sodium hydride (0.005 gm, 0.23 mmol) in THF (5 mL) for 24 hours at room temperature. After evaporation of THF, the sodium salt of ligand **L1B** was suspended in acetonitrile (6 mL) and [(COD)PdMeCl] (0.061 gm, 0.23 mmol) was added. The reaction mixture was stirred at room temperature for 1 hour. Resulting turbid solution was passed through the bed of celite under argon. Volatiles were evaporated to obtain off white solid in 84 % isolated yield.

³¹**P** NMR (400 MHz in CDCl₃): $\delta = 41.06$. ¹H NMR (400 MHz in CDCl₃): $\delta = 7.63$ (s, 2H, Ar-H), 7.41-7.46 (m, 8H, Ar-H), 7.37 (m, 4H), 7.16 (m, 1H, Ar-H), 6.85 (m, 2H, Ar-H), 6.70 (m, 1H, Ar-H), 2.23 (s, 3H, *p*-OMe), 2.09 (s, 3H, MeCN), 0.49 (s, 3H, Pd-Me). **ESI-MS:** Calculated *m*/*z* for[C₂₈H₂₈N₂O₂PPdS]⁺= 593.0644 [M+H]⁺; found *m*/*z* = 593.0679 [M+H]⁺.

Figure S70: ¹HNMR spectrum of complex C7 in CDCl₃.

Figure S71: ESI-MS spectrum of complex C7 in methanol.

4. Ethylene Oligomerization

Ethylene (4.5 grade) was supplied by Ms. Vadilal Chemicals Ltd. Pune, India. Ethylene oligomerization was carried out in a 250 mL stainless steel high-pressure Büchi (GlasUster cyclone 075) reactor equipped with a heating/cooling jacket and mechanical stirrer. Prior to the experiment, the reactor was fully dried by heating it in vacuum at 90 °C for 30 min, followed by cooling it to room temperature and filling it with argon. After cooling under argon, the reactor was flushed with ethylene (3 times, at the desired pressure) and was charged with appropriate quantity of toluene under positive ethylene pressure. The reactor was then pressurized to the desired pressure and saturated with ethylene for 30 min at the desired reaction temperature. After cooling to room temperature, the solution of catalysts (63 µmol in 10 mL DCM) was introduced into the reactor at room temperature. The reactor was generally carried out for 1 h, the excess ethylene was slowly vented off, and the reactor was allowed to cool down to room temperature. Solvent was evaporated under reduced pressure at 45°C on rotavap. The resultant semi-solid/oil gray color material was weighed and characterized by various methods. It appears that ligand is decomposing and palladium

blacking is precipitating. Yield of the oligomers is calculated after subtracting the initial weight of the catalyst. Important polymerization experiments using catalysts C1-C7 are summarized in Table 1.

Entry (Entry	Cat.	Temp. (°C)	Press.	Yield	TOF (mol of	M	n
from Table 1)			(bar)	(mg)	PE/mol of Pd/h)	GPC	NMR
1 (3)	C1	90	20	19	11	300	
2 (10)	C4	90	10	67	37	1100	~1100
3 (13)	C5	90	10	101	57	300	-
4 (15)	C5	100	20	104	58	1000	~800
5 (17)	C5	100	40	141	80	1100	-
6 (18)	C5	110	10	103	58	1000	
7 (22)	C5	120	40	97	55	1000	~1900
8 (26)	C6	90	10	43	24	300	

Table S6. Molecular weight of ethylene oligomers by GPC and ¹H NMR spectroscopy.

5. Characterization of ethylene oligomers:

 M_n by ¹H NMR: The calculation of number average molecular weight by ¹H NMR is well established in literature and we adopted the same method. The general formula used for M_n calculation in reference method is a under⁷:

 $\frac{\text{peak area of repeating units and glycerol linkage}}{\text{\# of protons in repeating units and glycerol linkage}} = \frac{\text{peak area of end groups}}{\text{\# of protons in end groups}}$ $\frac{9.65}{12n+5} = \frac{1.00}{9}, n = 6.82 \approx 7 \text{ repeating monomer units}$ $M_n = FW_{glycerol linkage} + FW_{end groups} + FW_{repeating units} = 41 + 177 + (44 \times 7 \times 3) = 1142$

Thus, the M_n for Table S6, entry 4 (see figure S72) is determined as under:

Degree of Polymerization (DP) = (Integral of the repeating unit / no. of protons of repeating unit) \times (Peak area of end group / No. of protons in end group)

 $M_n = DP \times Molecular \ weight \ of \ repeating \ unit$

For figure S72:

 $DP = 108.83/4 \times 2/2$

 $DP = 27.25 \sim 27$ repeating units

 $M_n = 27 \times 28 = 756 \ \text{~~}800 \ \text{Da}$

Figure S72: ¹H NMR spectrum of ethylene oligomers obtained from entry 4 (table S6) in CDCl₃.

Figure S73: ¹³C NMR spectrum of ethylene oligomers obtained from entry 4 (table S6) in CDCl₃.

Figure S74: DEPT-NMR spectrum of ethylene oligomers obtained from entry 4 (table S6) in CDCl₃.

Figure S75: COSY-NMR spectrum of ethylene oligomers obtained from entry 4 (table S6) in CDCl₃.

Figure S76: HSQC-NMR spectrum of ethylene oligomers obtained from entry 4 (table S6) in CDCl₃.

Figure S77: HMBC-NMR spectrum of ethylene oligomers obtained from entry 4 (table S6) in CDCl₃.

Figure S78: ¹H NMR spectrum of oligomers obtained from entry 22 (table 1) in CDCl₃.

GPC data:

Figure S79: GPC chromatogram of oligomers obtained from entry 1 (table S6) in THF.

Figure S80: GPC chromatogram of oligomers obtained from entry 3 (table S6) in THF.

Mn (Da)	1056
Mw (Da)	1127
Mz (Da)	1209
Mp (Da)	1028
Mw/Mn	1.066
% Above 0	100.00
% Below 0	0.00

Figure S81: GPC chromatogram of oligomers obtained from entry 2 (table S6) in THF.

Figure S82: GPC chromatogram of oligomers obtained from entry 5 (table S6) in THF.

Figure S83: GPC chromatogram of oligomers obtained from entry 4 (table S6) in THF.

Peak	2
Ret Vol (mL)	23.651
Mn (Da)	984
Mw (Da)	1047
Mz (Da)	1122
Mp (Da)	912
Mw/Mn	1.063
% Above 0	100.00
% Below 0	0.00

Figure S84: GPC chromatogram of oligomers obtained from entry 6 (table S6) in THF.

Figure S85: GPC chromatogram of oligomers obtained from entry 7 (table S6) in THF.

Figure S86: GPC chromatogram of oligomers obtained from entry 8 (table S6) in THF.

Figure S87: MALDI-ToF-MS analysis of oligoethylene from entry 17 (Table 1).

Figure S88: MALDI-ToF-MS analysis of oligoethylene from entry 13 table 1.

6. Catalyst stability study

Temperature dependent ³¹P NMR study of catalyst C1 was investigated. The NMR was recorded from room temperature to 80 °C temperature and it was found that there is no change in ³¹P NMR chemical shift. This study suggest that the catalyst is stable at 80 °C.

Figure S89: Temperature dependent catalyst study of complex C1 by ³¹P-NMR in CDCl₃.

7. Crystal data

Table S7. Comparison of bond distances of complexes C1, C2 and C3.

Bonds	Distance (Å)				
	C2	C1	С3		
Pd-C	2.09	2.05	2.04		
Pd-P	2.19	2.20	2.23		
$Pd-N^1$	2.12	2.13	2.12		
Pd-N ²	2.16	2.18	2.17		

Dand angles	Angle (°)				
bonu angles	C2	C1	C3		
P-Pd-N ²	82.28	79.96	94.60		
P-Pd-C	92.35	94.27	86.36		
C-Pd-N ¹	90.70	86.71	88.93		
N ¹ -Pd-N ²	94.28	98.83	90.17		

Table S8. Comparison of bond angles of complexes C1, C2 and C3.

The crystal data for L1A, L1B, C1, C2, C3 is summarized in Table S10.

 Table S9.Crystal data table.

	L1A	L1B	C1	C2	C3
Formula	C ₂₇ H ₂₆ NO ₄ P	C ₂₅ H ₂₂ NO ₂ P	C33H33N2O4	$C_{31}H_{29}N_2O_2$	C33H33N2O4
	S	S	PPdS	PPdS	PPdS
Mr	491.52	431.46	691.04	630.99	691.04
Crystal Size,	0.20×0.17×0	0.19×0.11×0	0.19×0.03×0	0.24×0.19×0	0.20×0.17×0
mm	.03	.07	.02	.03	.03
Temp. (K)	100(2)	100(2)	100(2)	100(2)	100(2)
Crystal Syst.	Triclinic	Triclinic	monoclinic	Triclinic	Triclinic
Space	<i>P</i> -1	<i>P</i> -1	$P2_{1}/c$	<i>P</i> -1	<i>P</i> -1
Group					
a/Å	9.5013(4)	10.0641(6)	12.3236(13)	9.466(7)	9.959(2)
b/Å	10.9649(4)	10.8548(6)	18.867(2)	13.978(11)	11.496(3)
c/Å	13.6934(5)	11.1095(6)	13.3975(15)	22.863(18)	13.574(3)
$\alpha/^{0}$	73.562(2)	76.414(2)	90	74.14(2)	91.745(8)
β^{0}	70.075(2)	81.176(2)	105.039(4)	87.92(2)	100.761(8)
<i>γ</i> / ⁰	71.803(2)	65.105(2)	90	85.66(2)	95.062(9)
$V/Å^3$	1248.98(9)	1068.02(11)	3008.4(6)	2901(4)	1519.0(6)
Ζ	2	2	4	4	2
$D_{\rm calc}/{\rm g~cm^{-3}}$	1.307	1.342	1.526	1.445	1.511
μ/mm^{-1}	0.227	0.249	0.781	0.797	0.773
F(000)	516	452	1416	1288	708
Ab. Correct.	multi-scan	multi-scan	multi-scan	multi-scan	multi-scan
Tmin/ Tmax	0.956/0.993	0.954/0.983	0.866/0.985	0.832/0.976	0.861/0.977
$2\theta_{max}$	61.6	56	56	50.39	56
Total	19104	71397	160280	30943	50137
reflections					
Unique	7686	5123	7256	10372	7286
reflections					
Observed	6027	4842	6681	7190	6609
reflections					
<i>h</i> , <i>k</i> , <i>l</i> (min,	(-12, 13),	(-13, 13),	(-16, 16),	(-11, 11),	(-13, 13),
max)	(-14, 15),	(-14, 14),	(-24, 24),	(-16, 16),	(-15, 15),

	(-19, 19)	(-14, 14)	(-17, 17)	(-27, 27)	(-17, 17)
Rint	0.0211	0.0305	0.0441	0.0727	0.0510
Rsig	0.0271	0.0116	0.0113	0.0943	0.0302
No. of	283	276	383	689	383
parameters					
No. of	0	0	0	0	
restraints					
<i>R1</i> [$I > 2\sigma(I)$]	0.0473	0.0348	0.0237	0.0657	0.0273
wR2[I>	0.1235	0.0852	0.0568	0.1566	0.0689
$2\sigma(I)$]					
R1 [all data]	0.0625	0.0367	0.0274	0.0959	0.0318
<i>wR2</i> [all	0.1342	0.0865	0.0605	0.1679	0.0720
data]					
goodness-	1.030	1.052	1.075	1.137	1.062
of-fit					
$\Delta \rho_{\rm max}$,	+0.558,	+1.176,	+1.189,	+1.138,	+1.065,
$\Delta \rho_{\min}(e \text{\AA}^{-3})$	-0.557	-0.330	-1.012	-1.120	-0.631
CCDC No.	1977111	1977110	1977114	1977112	1977113

8. References

7 Sigma-Aldrich. Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG; Pluronic L-35; CAS No. 9003-11-6). www.sigmaaldrich.com/catalog/product/aldrich/435414

¹ E. V. Salo and Z. Guan, Organometallics 2003, 22, 5033-5046

² Bruker (2016).*APEX2, SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA. 3 G. M. Sheldrick, *Acta Crystallogr*. 2008, **A64**, 112-122.

⁴ G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3-8.

⁵ L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849-854.

⁶ Z. Jian, L. Falivene, P. Wucher, P. Roesle, L. Caporaso, L. Cavallo, I. Göttker-Schnetmann and S. Mecking, *Chem. Eur. J.* 2015, **21**, 2062-2075.