Electronic Supplementary Information

Bond switching is responsible for nanoductility in zeolitic imidazolate framework glasses

Theany To^{‡,a}, Søren S. Sørensen^{‡,a}, Yuanzheng Yue^a and Morten M. Smedskjaer^{*,a}

^a [·] Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark

[‡] These authors contributed equally

* Corresponding author email: mos@bio.aau.dk

Supplementary Tables

Table S1: Average number of broken bonds, for which either N or Zn is a part of the bond, relative to the total number of broken bonds at the point of maximum strain for each glass type. It can be observed that bonds connecting N and Zn are nearly exclusively broken during the fracture process.

	Broken N-related bonds relative to	Broken Zn-related bonds relative to
	total number of broken bonds (70)	total number of broken bonds (70)
ZIF-4	99.6	98.6
ZIF-62	99.7	99.5
ZIF-76	99.5	98.8

Supplementary Figures

Figure S1: Stress-strain curves of simulated SiO_2 (yellow) and $30Na_2O-70SiO_2$ (green) glasses from ref.⁷, as well as the ZIF-4, ZIF-62, and ZIF-76 glasses from this study and ref.¹, highlighting the pronounced nanoductility of the ZIF glasses.

Figure S2: (a) Average N-Zn-N bond angle and (b) average N-Zn bond length of the three ZIF glasses during applied tensile strain in MD simulations from 0 to 100% strain.

Figure S3: (a) Relationship between fracture surface energy (γ) and Poisson's ratio (ν) for a range of materials. The figure is adopted from Ref.¹, but extended with the data from Refs.^{11–13} and additional data for metallic glasses^{14–17}, silicate glasses^{18–20}, borate glasses^{20–23}, chalcogenide glasses^{22,24,25}, phosphate glasses^{22,26}, fluoride glasses^{19,22}, oxycarbide glasses and glass ceramics^{10,20}, tellurite glass²², and the present ZIF glasses. (b) Relation between fracture toughness and Young's modulus for a range of materials. The figure is adopted with the data from the Ashby plot¹⁷ and extended with those of the present ZIF glasses.

Figure S4: Average changes in Zn-N bonding during applied tensile strain in MD simulations from 0 to 100 % strain for (a) ZIF-62 glass and (b) ZIF-76 glass.

Supplementary References

- 1 T. To, S. S. Sørensen, M. Stepniewska, A. Qiao, L. R. Jensen, M. Bauchy, Y. Yue and M. M. Smedskjaer, *Nat. Commun.*, 2020, **11**, 2593.
- 2 S. S. Sørensen, M. B. Østergaard, M. Stepniewska, H. Johra, Y. Yue and M. M. Smedskjaer, *ACS Appl. Mater. Interfaces*, 2020, **12**, 18893–18903.
- 3 Y. Yang, Y. K. Shin, S. Li, T. D. Bennett, A. C. T. Van Duin and J. C. Mauro, *J. Phys. Chem. B*, 2018, **122**, 9616–9624.
- C. Zhou, L. Longley, A. Krajnc, G. J. Smales, A. Qiao, I. Erucar, C. M. Doherty, A. W. Thornton, A. J. Hill, C. W. Ashling, O. T. Qazvini, S. J. Lee, P. A. Chater, N. J. Terrill, A. J. Smith, Y. Yue, G. Mali, D. A. Keen, S. G. Telfer and T. D. Bennett, *Nat. Commun.*, 2018, 9, 1–9.
- 5 S. Plimpton, J. Comput. Phys., 1995, **117**, 1–19.
- 6 L. Brochard, G. Hantal, H. Laubie, F. J. Ulm and R. J.-M. Pellenq, *Poromechanics V*, 2013, **5**, 2471–2480.
- 7 B. Wang, Y. Yu, Y. J. Lee and M. Bauchy, *Front. Mater.*, 2015, **2**, 11.
- 8 M. Bauchy, H. Laubie, M. J. Abdolhosseini Qomi, C. G. Hoover, F. J. Ulm and R. J. M. Pellenq, *J. Non. Cryst. Solids*, 2015, **419**, 58–64.
- 9 T. Rouxel, Scr. Mater., 2017, 137, 109–113.
- 10 T. To, C. Stabler, E. Ionescu, R. Riedel, F. Célarié and T. Rouxel, *J. Am. Ceram. Soc.*, 2020, **103**, 491–499.
- K. V Tian, B. Yang, Y. Yue, D. T. Bowron, J. Mayers, R. S. Donnan, C. Dobó-Nagy, J. W. Nicholson, D.-C. Fang, A. L. Greer, G. A. Chass and G. N. Greaves, *Nat. Commun.*, 2015, 6, 8631.
- 12 J. J. Lewandowski, W. H. Wang and A. L. Greer, *Philos. Mag. Lett.*, 2005, **85**, 77–87.
- 13 M. B. Østergaard, S. R. Hansen, K. Januchta, T. To, S. J. Rzoska, M. Bockowski, M. Bauchy and M. M. Smedskjaer, *Materials (Basel).*, 2019, **12**, 2439.
- 14 R. D. Conner, R. B. Dandliker and W. L. Johnson, *Acta Mater.*, 1998, 46, 6089–6102.
- 15 R. D. Conner, A. J. Rosakis, W. L. Johnson and D. M. Owen, *Scr. Mater.*, 1997, **37**, 1373–1378.
- 16 V. Keryvin, V. H. Hoang and J. Shen, *Intermetallics*, 2009, 17, 211–217.
- 17 C. C. Yuan and X. K. Xi, J. Appl. Phys., 2011, 109, 33515.
- 18 V. Rajendran, A. N. Begum, M. A. Azooz and F. H. El Batal, *Biomaterials*, 2002, 23, 4263–4275.
- M. Tiegel, R. Hosseinabadi, S. Kuhn, A. Herrmann and C. Rüssel, *Ceram. Int.*, 2015, 41, 7267–7275.
- 20 T. To, Université de Rennes 1 (PhD thesis), 2019.
- 21 H. Matzke, E. Toscano, J. Routbort and K. Reimann, *J. Am. Ceram. Soc.*, 1986, **69**, C--138.
- 22 J. A. Sampaio, M. L. Baesso, S. Gama, A. A. Coelho, J. A. Eiras and I. A. Santos, J. Non. Cryst. Solids, 2002, **304**, 293–298.
- 23 N. Shinkai, R. C. Bradt and G. E. Rindone, J. Am. Ceram. Soc., 1982, 65, 123–126.
- 24 E. Le Bourhis, P. Gadaud, J.-P. Guin, N. Tournerie, X. H. Zhang, J. Lucas and T. Rouxel, *Scr. Mater.*, 2001, **45**, 317–323.
- 25 J.-P. Guin, T. Rouxel, J.-C. Sanglebœuf, I. Melscoët and J. Lucas, *J. Am. Ceram. Soc.*, 2002, **85**, 1545–1552.
- 26 T. Miura, T. Watanabe, Y. Benino and T. Komatsu, *J. Am. Ceram. Soc.*, 2001, **84**, 2401–2408.