Supplementary Information for

Formation of the Ni(II)-Phenoxyl Radical Complexes by O₂: A Mechanistic Insight into the Reaction of Ni(II)-Phenol Complexes with O₂

Takashi Suzuki, Akari Sato, Hiromi Oshita, Tatsuo Yajima, Fumito Tani, Hitoshi Abe, Kaoru Mieda-Higa, Sachiko Yanagisawa and Yuichi Shimazaki*

Table of contents:

Figure S1. ESI-MS spectrum of reaction mixture of Ni(ClO₄)₂·6H₂O in CH₃OH with H₂Me₂NL in CH₂Cl₂ and 1 equivalent of triethylamine under the aerobic conditions. \Box **Figure S2**. X-ray structure of [Ni₂(tbuL)₂] (4).

Figure S3. Cyclic voltammograms of dimer complex **4** (0.5 mM) in $CH_2Cl_2(A)$, complex **1** in CH_2Cl_2/CH_3OH (B) and **2** in CH_2Cl_2/CH_3OH (C) containing [NBu₄][PF₆] (0.1 M) as supporting electrolyte, at scan rates of 20-1000 mV/s.

Figure S4. UV-vis-NIR spectrum of $[Ni(Me_2NL)(CH_3OH)_2]ClO_4$ (5) with the horizontal axis of wavelength (nm) (A) and wavenumber (cm⁻¹) (B).

Figure S5. Resonance Raman spectrum of complex 5 in CH₂Cl₂ at $\lambda_{ex} = 532$ nm excitation.

Figure S6. Ni K-edge XANES of Ni complexes 1 (dotted line) and 5 (solid line).

Figure S7. EPR spectra of 1 exposed to O₂ for 1 day (A) and 5 (B) in CH₂Cl₂ at 4 K.

Figure S8. Resonance Raman spectra of 1 (A) and its oxidation products obtained by O₂ for 24 h (B) at $\lambda_{ex} = 405$ nm excitation.

Figure S9. EXAFS curve fitting results for complex **1** (A) and its oxidized species exposed to O_2 for 6 h (B) and 24 h (C) in *R*-space. The experimental (black circle) and the fitting curves (red line) along with contributions of different paths are shown in the figure. Fittings were performed for the coordination shells in the *R*-range of 1.1-2.0 Å.

Table S1. Structural parameters obtained from the EXAFS curve fittings.

Figure S10. Reflectance spectral change for the oxidation of deuterated complex **1** in the solid state. From the bottom line to top line, the spectra indicate 0 h, 0.5 h, 1 h, 2 h, 3 h, 4h, 6h, 24h-oxidation by O₂, respectively.

Figure S11. Plot of 1/[A] at 510 nm vs time in the initial step of complex 3 (black circle)

and deuterium–labelled complex **3** (red square) with O₂. The black line and the red line are fitting results of complex **3** and the deuterium–labelled complex **3**, respectively. **Table S2.** Crystallographic Data for [Ni(HtbuL)(CH₃OH)₂]ClO₄•2CH₃OH (1),

 $[Ni(HMeOL)(CH_3OH)_2]ClO_4$ (2), $[Ni_2(tbuL)_2]$ (4) and $[Ni(Me_2NL)(CH_3OH)_2]ClO_4$ (5).

Figure S1. ESI-MS spectrum of reaction mixture of Ni(ClO₄)₂·6H₂O in CH₃OH with H₂Me₂NL in CH₂Cl₂ and 1 equivalent of triethylamine under the aerobic conditions. Inset; expand view of the spectrum in the region of $[Ni(HMe_2NL)]^+$ and the simulation. The peak was estimated to be sum of Ni^{II}-(phenol)(phenolate) complex $[Ni(HMe_2NL)]^+$ (57.1 %) and its oxidized complex $[Ni(Me_2NL)]^+$ (42.9 %), due to the oxidation by O₂ during the measurement.

Figure S2. X-ray structure of $[Ni_2(tbuL)_2]$ (4).

Figure S3. Cyclic voltammograms of dimer complex 4 (0.5 mM) in CH_2Cl_2 (A), complex 1 in CH_2Cl_2/CH_3OH (B) and 2 in CH_2Cl_2/CH_3OH (C) containing [NBu₄][PF₆] (0.1 M) as supporting electrolyte, at scan rates of 20-1000 mV/s.

Figure S4. UV-vis-NIR spectrum of $[Ni(Me_2NL)(CH_3OH)_2]ClO_4$ (**5**) with the horizontal axis of wavelength (nm) (A) and wavenumber (cm⁻¹) (B).

Figure S5. Resonance Raman spectrum of complex **5** in CH₂Cl₂ at $\lambda_{ex} = 532$ nm excitation.

Figure S6. Ni K-edge XANES of Ni complexes 1 (dotted line) and 5 (solid line).

Figure S7. EPR spectra of 1 exposed to O_2 for 1 days (A) and 5 (B) in CH_2Cl_2 at 4 K.

Figure S8. Resonance Raman spectra of **1** (A) and its oxidation products obtained by O_2 for 24 h (B) at $\lambda_{ex} = 405$ nm excitation.

Figure S9. EXAFS curve fitting results for complex **1** (A) and its oxidized species exposed to O_2 for 6 h (B) and 24 h (C) in *R*-space. The experimental (black circle) and the fitting curve (black line) are shown in the figure. Red, green, and blue line denote the scattering paths from two Ni-N bond, one Ni-phenolate oxygen bond (Ni-O1) and three Ni-O (Ni-phenol (or Ni-phenoxyl radical) and two Ni-methanol oxygen) bond (Ni-O2), respectively. Fittings were performed for the coordination shells in the *R*-range of 1.1-2.0 Å.

Sample	Bond	Distance(Å)	CN ^a	CN (total)	DW ^b	<i>R</i> -factor
					lacioi	
complex 1 (0h)	Ni-N	2.06	1.96		0.010	
	Ni-O1	1.93	0.98	5.89	0.010	0.005
	Ni-O2	2.06	2.94		0.010	
6h	Ni-N	2.06	1.97		0.010	
	Ni-O1	1.93	0.99	5.92	0.010	0.006
	Ni-O2	2.06	2.96		0.010	
24 h	Ni-N	2.06	2.09		0.011	
	Ni-O1	1.93	1.04	6.26	0.011	0.005
	Ni-O2	2.06	3.13		0.011	

Table S1. Structural parameters obtained from the EXAFS curve fittings.

^{*a*} Coordination Number

^b Debye-Waller

Figure S10. Reflectance spectral change for the oxidation of the deuterated complex **1** in the solid state. From the bottom line to top line, the spectra indicate 0 h, 0.5 h, 1 h, 2 h, 3 h, 4h, 6h, 24h-oxidation by O₂, respectively.

Figure S11. Plot of 1/[A] at 510 nm vs time in the initial step of complex 3 (black circle) and deuterium–labelled complex 3 (red square) with O₂ at 243 K. The black line and the red line are fitting results of complex 3 and the deuterium–labelled complex 3, respectively.

	1	2	4
Formula	C40H58ClN2NiO10	C35H53CIN2NiO9	C ₃₆ H ₅₀ N ₂ NiO ₂
Formula weight	821.06	739.96	601.50
Color	Green	Green	Yellow
Crystal size /mm	0.15 x 0.12 x 0.05	0.06 x 0.06 x 0.01	0.09 x 0.09 x 0.02
Crystal system	Triclinic	Triclinic	Monoclinic
Space group	<i>P</i> -1	<i>P</i> -1	C2/c
<i>a</i> (Å)	11.4551(7)	11.1065(9)	29.0820(17)
<i>b</i> (Å)	14.5863(9)	14.0921(11)	9.6176(5)
<i>c</i> (Å)	15.9271(11)	14.4840(13)	23.3195(12)
α (°)	63.7131(18)	106.612(8)	-
β (°)	71.4309(18)	110.723(8)	96.960(7)
γ (°)	68.271615)	106.927(8)	-
$V(Å^3)$	2178.0(2)	1826.8(4)	6474.4(6)
Ζ	2	2	8
μ (cm ⁻¹)	5.61	6.58	6.33
<i>F</i> (000)	874.00	788.00	2592.00
D_{calc} (g/cm ³)	1.252	1.345	1.234
$2\theta_{\max}$ (°)	55.0	55.0	55.0
No. reflections obsd.	9718	8295	7425
No. reflections used.	7106	8295	7425
No. variables	532	445	370
$R_l^{a}(l \ge 2\sigma(l))$	0.0623	0.0869	0.0757
$R_w^{ m b}$	0.1806	0.2390	0.2404

Table S2.CrystallographicDatafor $[Ni(HtbuL)(CH_3OH)_2]ClO_4 \cdot 2CH_3OH$ (1), $[Ni(HMeOL)(CH_3OH)_2]ClO_4$ (2), $[Ni_2(tbuL)_2]$ (4) and $[Ni(Me_2NL)(CH_3OH)_2]ClO_4$ (5).

Table S2. (continued)

	5		
Formula	C ₃₆ H ₅₅ ClN ₃ NiO ₈		
Formula weight	752.00		
Color	Brown		
Crystal size /mm	0.10 x 0.10 x 0.10		
Crystal system	Triclinic		
Space group	<i>P</i> -1		
<i>a</i> (Å)	11.2054(14)		
<i>b</i> (Å)	14.0233(16)		
<i>c</i> (Å)	14.5332(15)		
α (°)	105.820(7)		
<i>b</i> (Å)	110.390(8)		
γ (°)	107.239(7)		
$V(Å^3)$	1885.5(4)		
Ζ	2		
μ (cm ⁻¹)	6.48		
F(000)	802.00		
D_{calc} (g/cm ³)	1.346		
$2 heta_{ m max}$ (°)	55.0		
No. reflections obsd.	8428		
No. reflections used.	8428		
No. variables	450		
$R_l^{a}(l \ge 2\sigma(l))$	0.0550		
$R_w^{ m b}$	0.1616		

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}| \text{ for } I > 2\sigma(I) \text{ data. } {}^{b}R_{w} = \{\Sigma \omega (|F_{o}| - |F_{c}|)^{2} / \Sigma \omega F_{o}^{2}\}^{1/2}; \ \omega = 1 / \sigma^{2}(F_{o}) = \{\sigma^{2}_{c}(F_{o}) + p^{2}/4 \cdot F_{o}^{2}\}^{-1}$