Two porous Ni-MOFs based on 2,4,6-tris(pyridin-4-yl)-1,3,5-triazine

showing solvent determined structures and distinctive sorption

properties toward CO₂ and alkanes

Bin-Bin Qian,^a Peng-Chao Song,^b Hong-Xiang Nie,^a Bo Zhang,^a Jin-Yu Zheng^c, Mei-Hui Yu,^{*a} and Ze Chang^{*a}

^a School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-

Based Material Chemistry, Nankai University, Tianjin 300350, China.

E-mail:mh@nankai.edu.cn; changze@nankai.edu.cn

^b Yantai Engineering & Technology College, Yantai, 264006 China.

^c State Key Laboratory of Catalytic Materials and Reaction Engineering, SINOPEC Research

Institute of Petroleum Processing, Beijing 100083, China

Compounds	1	2 C ₇₂ H ₄₂ N ₁₂ O ₁₈ Ni ₃	
Formula	$C_{37.42}H_{38}N_6O_{20}Ni_3$		
CCDC	1996089	1996089	
Formula weight	1067.91	1761.70	
Crystal system	Trigonal	Monoclinic	
Space group	<i>R</i> -3 <i>m</i>	$P2_{1}/n$	
<i>a</i> (Å)	27.1230(3)	10.13653(10)	
<i>b</i> (Å)	27.1230(3)	25.9159(2)	
<i>c</i> (Å)	38.1727(3)	15.63851(15)	
α (°)	90	90	
β (°)	90	101.0451(9)	
γ (°)	120	90	
$V(Å^3)$	24319.7(4)	4032.10(7)	
Z	18	2	
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	1.312	1.451	
$\mu(\text{mm}^{-1})$	1.835	1.548	
F(000)	9873	1836.0	
Data collected	24179	22979	
Unique reflections	5146	7947	
Goodness-of-fit on F ²	1.054	1.081	
$\mathbf{R}_1, \mathbf{w}\mathbf{R}_2 \left[I \ge 2\sigma(I)\right]^{\alpha}$	0.0561 0.1578	0.0410 0.1222	
R ₁ , wR ₂ [all data] ^b	0.0577 0.1591	0.0440 0.1242	
${}^{a}R_{1} = \sum F_{o} - F_{c} / \sum F_{o} . {}^{b}wR_{o} $	$_{2} = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum w(F_{o}^{2})^{2} \}$	2 } 1/2	

Table 1 Crystal data and structure refinement details for 1 and 2

			-		
Bond	Dist.	Bond	Dist.	Bond	Dist.
Ni(1)-O(2)	2.014(2)	Ni(2)-N(1)	2.048(3)	Ni(3)-N(2)	2.085(5)
Ni(1)-O(1W)	2.132(2)	Ni(2)-O(3)	2.013(2)	Ni(3)-O(7)	2.092(6)
Ni(1)-O(3W)	2.005(3)	Ni(2)-O(2W)	2.078(3)	Ni(3)-O(1)	2.001(2)
Ni(1)-N(1)	2.048(3)	Ni(2)-O(3W)	2.077(3)		
Angle	(°)	Angle	(°)	Angle	(°)
O(1W)#1-Ni(1)-O(1W)	87.61(15)	N(1)-Ni(1)-O(1W)	89.00(9)	O(5)#1-Ni(2)-O(2W)	86.51(10)
O(2)-Ni(1)-O(1W)#1	87.17(10)	N(1)-Ni(1)-O(1W)#1	89.00(9)	O(5)#1-Ni(2)-O(3W)	90.56(8)
O(2)-Ni(1)-O(1W)	174.51(10)	O(3)-Ni(2)-O(2W)	89.98(10)	O(5)-Ni(2)-O(3W)	90.56(8)
O(2)#1-Ni(1)-O(1W)	87.18(10)	O(3)#1-Ni(2)-O(2W)	89.98(10)	O(5)-Ni(2)-O(5)#1	87.22(14)
O(2) ^{#1} -Ni(1)-O(1W) ^{#1}	174.51(10)	O(3) ^{#1} -Ni(2)-O(3)	93.53(15)	O(1)-Ni(3)-O(1)#2	122.06(14)
O(2)-Ni(1)-O(2) ^{#1}	97.99(13)	O(3)-Ni(2)-O(3W)	92.79(8)	O(1) ^{#2} -Ni(3)-O(6) ^{#4}	87.76(9)
O(2) ^{#1} -Ni(1)-N(1)	89.20(9)	O(3) ^{#1} -Ni(2)-O(3W)	92.79(8)	O(1)-Ni(3)-O(6) ^{#3}	87.76(9)
O(2)-Ni(1)-N(1)	89.20(9)	O(3) ^{#1} -Ni(2)-O(5)	175.35(9)	O(1) ^{#2} -Ni(3)-O(6) ^{#3}	149.70(10)
O(3W)-Ni(1)-O(1W)	88.49(8)	O(3) ^{#1} -Ni(2)-O(5) ^{#1}	89.53(10)	O(1)-Ni(3)-O(6)#4	149.70(10)
O(3W)-Ni(1)-O(1W) ^{#1}	88.49(8)	O(3)-Ni(2)-O(5) ^{#1}	175.35(9)	O(1)-Ni(3)-O(7)	87.02(12)
O(3W)-Ni(1)-O(2)	93.07(8)	O(3)-Ni(2)-O(5)	89.52(10)	O(1) ^{#2} -Ni(3)-O(7)	87.01(12)
O(3W)-Ni(1)-O(2)#1	93.07(8)	O(3W)-Ni(2)-O(2W)	175.95(14)	O(1)-Ni(3)-N(2)	93.15(11)
O(3W)-Ni(1)-N(1)	176.53(12)	O(5)-Ni(2)-O(2W)	86.51(10)	O(1) ^{#2} -Ni(3)-N(2)	93.15(11)

 Table S1
 Selected Bond Lengths (Å) and Bond Angles (°) for Compound 1

Symmetry transformation: #1: *x*, *x*-*y*+1, *z*; #2: -*x*+*y*+1,*y*,*z*; #3: -*x*+4/3,-*x*+*y*+2/3,-*z*+2/3; #4: *y*+1/3,-*x*+*y*+2/3,-*z*+2/3

Table 52 Selected Bond Dengins (1) and Dond Migles () for Compound 2							
Bond	Dist.	Bond	Dist.	Bond	Dist.		
Ni(1)-O(2)	2.0186(14)	Ni(1)-N(2)#2	2.1068(17)	Ni(2)-O(2W)	2.0632(16)		
Ni(1)-O(1W)	2.0367(15)	Ni(1)-O(5)#1	2.1362(14)	Ni(2)-O(2W)#3	2.0633(16)		
Ni(1)-N(3)	2.0918(17)	Ni(2)-O(3W)	2.0529(17)	Ni(2)-N(1)	2.1080(19)		
Ni(1)-O(6)#1	2.0924(14)	Ni(2)-O(3W)#3	2.0529(17)	Ni(2)-N(1)#3	2.1081(19)		
Angle	(°)	Angle	(°)	Angle	(°)		
O(2)-Ni(1)-O(1W)	96.13(6)	O(2)-Ni(1)-O(5) ^{#1}	101.10(6)	O(2W)-Ni(2)-O(2W) ^{#3}	180.0		
O(2)-Ni(1)-N(3)	87.13(6)	O(1W)-Ni(1)-O(5) ^{#1}	162.74(6)	O(3W)-Ni(2)-N(1)	90.48(7)		
O(1W)-Ni(1)-N(3)	90.90(6)	N(3)-Ni(1)-O(5)#1	90.76(6)	O(3W) ^{#3} -Ni(2)-N(1)	89.52(7)		
O(2)-Ni(1)-O(6) ^{#1}	163.85(6)	O(6) ^{#1} -Ni(1)-O(5) ^{#1}	62.84(5)	O(2W)-Ni(2)-N(1)	89.33(7)		
O(1W)-Ni(1)-O(6)#1	99.91(6)	N(2) ^{#2} -Ni(1)-O(5) ^{#1}	85.99(6)	O(2W) ^{#3} -Ni(2)-N(1)	90.67(7)		
N(3)-Ni(1)-O(6)#1	94.43(6)	O(3W)-Ni(2)-O(3W) ^{#3}	180.00(8)	O(3W)-Ni(2)-N(1)#3	89.52(7)		
O(2)-Ni(1)-N(2)#2	86.15(7)	O(3W)-Ni(2)-O(2W)	92.11(7)	O(3W) ^{#3} -Ni(2)-N(1) ^{#3}	90.48(7)		
O(1W)-Ni(1)-N(2)#2	94.43(6)	O(3W)#3-Ni(2)-O(2W)	87.89(7)	O(2W)-Ni(2)-N(1)#3	90.67(7)		
N(3)-Ni(1)-N(2)#2	171.84(7)	O(3W)-Ni(2)-O(2W) ^{#3}	87.89(7)	O(2W) ^{#3} -Ni(2)-N(1) ^{#3}	89.33(7)		
O(6) ^{#1} -Ni(1)-N(2) ^{#2}	90.75(6)	O(3W) ^{#3} -Ni(2)-O(2W) ^{#3}	92.11(7)	N(1)-Ni(2)-N(1)#3	180.00(11)		

 Table S2
 Selected Bond Lengths (Å) and Bond Angles (°) for Compound 2

Symmetry transformation: #1: x+1, y, z; #2: -x+3/2, y+1/2, -z+1/2; #3: -x+2, -y+1, -z+2; #4: x-1, y, z

Fig. S1 (a) Square shaped SBU constructed with binuclear nickel (Ni1, Ni2) and four BTC³⁻ ligands in 1. (b) Cubohemioctahedra supermolecular building block (SBB) assembled by square SBUs in 1. (c) Another square SBU constructed with two Ni3 and four BTC³⁻ ligands in 1. (d) Schematic view of the ftw-a-like topology of 1.

Fig. S2 Two types of TPT ligands depending on different connections in 1

Fig. S3 3-fold interpenetrated structure of compound **2** view along the *a* axis and *b* axis.

Fig. S4 Schematic view of topological representation of 2.

Fig. S5 (a) PXRD patterns of 1. (b) PXRD patterns of 2.

Fig. S6 (a) TGA curve of as-synthesized 1. (b) TGA curve of as-synthesized 2.

Fig. S7 In-situ PXRD patterns of as-synthesized 1 under variable temperatures.

Fig. S8 In-situ PXRD patterns of as-synthesized 2 under variable temperatures.