Supporting Information

Luong Phong Ho, Matthias Tamm*

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany. Fax: +49 (531) 391 5387; Tel: +49 (531) 391 5309; E-Mail: <u>m.tamm@tu-bs.de</u>

Content

S1 Materials and Methods	S2
S2 Synthetic Procedures	S3
S2.1 (WCA-IDipp)BiCl ₂ ·C ₆ H ₆ (2)	S3
S2.2 (WCA-IDipp) ₂ Bi ₂ (3)	S3
S3 Crystallographic details	S5
S3.1 (WCA-IDipp)BiCl ₂ ·C ₆ H ₆ (2)	S6
S3.2 (WCA-IDipp) ₂ Bi ₂ (3)	S8
S4 ¹ H, ¹³ C, ¹¹ B and ¹⁹ F NMR spectra	S10
S4.1 (WCA-IDipp)BiCl ₂ ·C ₆ H ₆ (2)	S10
S4.2 (WCA-IDipp) ₂ Bi ₂ (3)	S14
S5 UV/Vis spectra of (WCA-IDipp) ₂ Bi ₂ (3)	S18
S6 References	S19

S1 Materials and Methods

Unless otherwise indicated, all starting materials were obtained from commercial sources (Sigma-Aldrich, Alfa-Aeser, Roth, TCI, VWR or Fischer Chemical) and were used without further purification. Elemental analyses were carried out on a Vario Micro Cube System. All operations with air and moisture sensitive compounds were performed in a glove box under a dry argon atmosphere (MBraun 200B) or on a high vacuum line using Schlenk techniques.

The ¹H, ¹¹B, ¹³C and ¹⁹F NMR spectra were recorded on Bruker AVII 300 (300 MHz) and Bruker AV-II 600 (600 MHz). The chemical shifts are expressed in parts per million (ppm) with the residual solvent signal as internal standard for ¹H and ¹³C NMR spectra. All other spectra were calibrated using external references. Coupling constants (*J*) are reported in Hertz (Hz) and splitting patterns are indicated as s (singlet), d (doublet), t (triplet), sept (septet), m (multiplet) and br (broad). ¹¹B, ¹³C and ¹⁹F NMR spectra were measured broadband proton decoupled. *n*-Pentane, *n*-Hexane, and benzene were purified by distillation over sodium/benzophenone. Deuterated solvents were purified by stirring the degassed solvents with Na/K alloy overnight and were subsequently filtered and distilled under reduced pressure. All solvents were stored over molecular sieves (4 Å) in argon atmosphere prior to use. (WCA-IDipp)Li(toluene) (**1**)^[1] and 1,4-bis(trimethylsilyl)-1,4dihydropyrazine^[2] were prepared according to literature procedures.

S2 Synthetic Procedures

S2.1 (WCA-IDipp)BiCl₂·C₆H₆ (2)

(WCA-IDipp)Li(toluene) (2 g, 2 mmol, 1 eq.) was suspended in 50 mL benzene and BiCl₃ (632 mg, 2 mmol, 1 eq.) was added as solid at once. The resulting suspension quickly turned pink and became clearer. Stirring was continued overnight at room temperature. Afterwards, the mixture was filtered through Celite, leaving purple colored LiCl on the Celite and a pink solution. The solvent was removed in *vacuo*, giving a pink solid, which was washed with 3×5 mL *n*-hexane. Subsequent removal of residual solvent in *vacuo* yielded the product as a pale pink solid (1.763 g, 1.40 mmol, 70%). Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a saturated benzene solution.

¹**H NMR** (600 MHz; C₆D₆): δ = 7.09-7.06 (m, 1H, *p*-Dipp), 7.05-7.02 (m, 1H, *p*-Dipp), 6.93 (d, ³J(¹H, ¹H) = 7.8 Hz, 2H, *m*-Dipp), 6.85 (s, 1H, <u>H</u>C=CB), 6.74 (d, J = 7.8 Hz, 2H, *m*-Dipp), 2.92 (sept, ³J(¹H, ¹H) = 6.7 Hz, 2H, C<u>H(CH₃)₂), 2.55 (sept, ³J(¹H, ¹H) = 6.7 Hz, 2H, C<u>H(CH₃)₂), 1.31 (d, ³J(¹H, ¹H) = 6.7 Hz, 6H, CH(C<u>H₃)₂), 0.91–0.85 (m, 18H, 3 × CH(C<u>H₃)₂) ppm.</u></u></u></u>

¹³**C NMR** (151 MHz; C₆D₆): δ = 212.2 (s, N-C-N), 155.0-153.8 (m, HC=<u>C</u>B), 149.9-149.7 (m, =CF), 148.3-148.1 (m, =CF), 147.8 (s, *o*-Dipp), 145.9 (s, *o*-Dipp), 140.3-140.2 (m, =CF), 138.7-138.5 (m, =CF), 138.0-137.8 (m, =CF), 137.4 (s, H<u>C</u>=CB), 136.4-136.2 (m, =CF), 133.4 (s, *ipso*-Dipp), 132.3 (s, *p*-Dipp), 131.4 (s, *p*-Dipp), 131.0 (s, *ipso*-Dipp), 125.3 (s, *m*-Dipp), 123.6 (s, *m*-Dipp), 29.1 (s, <u>C</u>H(CH₃)₂), 27.6 (s, <u>C</u>H(CH₃)₂), 27.1 (s, CH(<u>C</u>H₃)₂), 26.7 (s, CH(<u>C</u>H₃)₂), 22.5 (s, CH(<u>C</u>H₃)₂), 21.9 (s, CH(<u>C</u>H₃)₂) ppm.

¹¹**B NMR** (96 MHz; C₆D₆): δ = -15.4 (s, 1B) ppm.

¹⁹**F NMR** (282 MHz; C₆D₆): δ = -130.82 - -131.55 (m, 6F, *m*-Ar-F), -158.59 (t, ³*J*(¹⁹F, ¹⁹F) = 20.7 Hz, 3F, *p*-Ar-F), -164.44 - -164.81 (m, 6F, *o*-Ar-F) ppm.

EA - Anal. calc. for $C_{45}H_{35}BBiCl_2F_{15}N_2 \cdot C_7H_8$: C, 49.12; H, 3.41; N, 2.20. Found: C, 49.57; H, 3.461; N, 2.65.

S2.2 (WCA-IDipp)₂Bi₂ (3)

A solution of (WCA-IDipp)BiCl₂·C₆H₆ (50 mg, 0.040 mmol, 1 eq.) in 0.5 mL benzene was frozen at -30° C under inert atmosphere in a narrow scintillation vial. Subsequently, four layers each consisting of 0.5 mL benzene were frozen atop of each other. A solution of 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine (9 mg, 0.040 mmol, 1 eq.) in 0.5 mL *n*-pentane was cooled to -30° C under inert atmosphere and carefully added on top of the frozen benzene layers. The vial was then allowed to warm undisturbed to room temperature overnight, upon which purple prism shaped crystals formed. The supernatant solution was carefully removed via decantation and the residual crystals were washed with 3×2 mL *n*-pentane. Subsequent removal of residual solvent in *vacuo* yielded the product as a purple solid (13 mg, 0.006 mmol, 29%).

¹**H-NMR** (600 MHz; THF-*d*₈): δ = 7.64 (t, ³*J*(¹H, ¹H) = 7.8 Hz, 2H, *p*-Dipp), 7.31 (d, ³*J*(¹H, ¹H) = 7.5 Hz, 4H, *m*-Dipp), 7.26-7.24 (m, 6H, *m*-Dipp & *p*-Dipp), 7.19 (s, 2H, <u>H</u>C=CB), 2.78 (t, ³*J*(¹H, ¹H) = 6.8 Hz, 4H, C<u>H</u>(CH₃)₂), 2.28 (t, ³*J*(¹H, ¹H) = 6.9 Hz, 4H, C<u>H</u>(CH₃)₂), 1.15 (d, ³*J*(¹H, ¹H) = 6.9 Hz, 12H, CH(C<u>H</u>₃)₂), 1.13 (t, ³*J*(¹H, ¹H) = 6.9 Hz, 12H, CH(C<u>H</u>₃)₂), 1.05 (d, *J* = 6.8 Hz, 12H, CH(C<u>H</u>₃)₂), 0.91 (d, ³*J*(¹H, ¹H) = 6.8 Hz, 12H, CH(C<u>H</u>₃)₂) ppm.

¹¹**B-NMR** (96 MHz; THF- d_8): $\delta = -16.0$ (s, 2B) ppm.

¹³**C NMR** (126 MHz, THF) δ = 151.0 - 150.4 (m, =CF), 149.5 (s, *o*-Dipp), 148.9 - 148.6 (m, =CF), 147.4 (s, HC=<u>C</u>B) 146.6 (s, *o*-Dipp), 141.2 - 140.4 (m, =CF),139.5 (s, *ipso*-Dipp), 139.0 - 138.4 (m, 2 × =CF), 136.9 - 136.4 (m, =CF), 135.5 (s, *p*-Dipp), 135.4 (s, *ipso*-Dipp), 134.8 -

134.5 (m, H<u>C</u>=CB), 132.6 (s, *p*-Dipp), 127.8 (s, *m*-Dipp), 126.2 (s, *m*-Dipp), 33.5 (s, CH(<u>C</u>H₃)₂), 29.6 (s, <u>C</u>H(CH₃)₂), 28.8 (s, <u>C</u>H(CH₃)₂), 22.7 (s, CH(<u>C</u>H₃)₂) ppm.

Two signals corresponding to two $CH(\underline{C}H_3)_2$ groups are overlayed with the residual solvent signal of the THF- d_8 . The signal corresponding to N–C–N was not observed.

¹⁹**F-NMR** (282 MHz; THF-*d*₈): δ = -129.13 - -129.88 (m, 12F, *o*-F), -162.18 (t, ³*J*(¹⁹F, ¹⁹F) = 20.2 Hz, 6F, *p*-F), -167.05 - -167.36 (m, 12F, *m*-F) ppm.

EA - Anal. calc. for $C_{90}H_{72}B_2Bi_2F_{30}N_4$: C, 48.71; H, 3.27; N, 2.52. Found: C, 48.14; H, 3.285; N, 2.97.

UV-Vis (THF): λ_{max} = 366 nm (3153 M⁻¹ cm⁻¹), 532 (5090 M⁻¹ cm⁻¹) nm.

S3 Crystallographic details

Suitable single crystals were mounted on a hair in perfluorinated inert oil. The intensity measurements were performed at 100 K on an Rigaku XtaLAB Synergy S Single Source diffractometer using mirror-focussed MoK α radiation. The diffractometer software CrysAlisPRO was employed.^[3] Absorption corrections were based on multiscans. The structures were refined anisotropically on F^2 using SHELXL-2018.^[4] Hydrogen atoms were included using a riding model or rigid methyl groups. Further details are given in Table S1-2.

Solvent content: The chloride species **2** contain two non-coordinated benzene molecules which are each disordered over two positions. One benzene molecule is coordinated to the bismuth atom and is ordered. The overall composition is three benzene molecules per asymmetric unit.

The dibismuthene **3** crystallizes with one molecule of benzene per asymmetric unit, which is formally ordered but display high *U* values.

Exceptions and special details: The solvent molecules in **2** and **3** were refined using appropriate restraints to improve stability of refinement.

Complete data have been deposited with the Cambridge Crystallographic Data Centre under the CCDC numbers 2050051-2050052 for compounds **2** and **3**. These data can be obtained free of charge from http://www.ccdc.cam.ac.uk/.

S3.1 (WCA-IDipp)BiCl₂·C₆H₆ (2) Table S1. Crystallographic data for compound 2.

Compound	2		
Identification code (CCDC)	2050051		
Empirical formula	$C_{63}H_{53}BBiCl_2F_{15}N_2$		
Formula weight	1413.76		
Temperature	100(2) К		
Wavelength	0.71073 Å		
Instrument (scan mode)	XtaLAB Synergy, Single source at offset/far, HyPix (w scan)		
Crystal system	Monoclinic		
Space group	P21/c		
Unit cell dimensions	a = 15.9856(4) Å	a= 90°	
	b = 12.4306(2) Å	b= 97.483(2)°	
	c = 29.7067(6) Å	g = 90°	
Volume	5852.8(2) Å ³		
Z	4		
Density (calculated)	1.604 Mg/m ³		
Absorption coefficient	3.194 mm ⁻¹		
F(000)	2808		
Crystal habitus	prism (colorless)		
Crystal size	0.191 x 0.185 x 0.062 mm ³		
Theta range for data collection	1.761 to 28.280°		
Index ranges	-21<=h<=19, -16<=k<=16, -39<=l<=39		
Reflections collected	312494		
Independent reflections	14524 [R(int) = 0.0640]		
Completeness to theta = 25.242°	99.9 %		
Absorption correction	Gaussian		
Max. and min. transmission	1.000 and 0.532		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	14524 / 199 / 876		
Goodness-of-fit on F ²	1.242		
Final R indices [I>2sigma(I)]	R1 = 0.0500, wR2 = 0.1108		
R indices (all data)	R1 = 0.0557, wR2 = 0.1126		
Largest diff. peak and hole	2.095 and -1.438 e.Å ⁻³		
Solution	SHELXS-2014/5 (G. M. Sheldrick, Acta Cryst., 2015, A71, 3-8)		
Refinement	SHELXL-2018/3 (G. M. Sheldrick, Acta Cryst., 2008, A64, 112-		
	122)		
Interface	OLEX2 v1.2 (O. V. Dolomanov et al., J. Appl. Cryst., 2009, 42, 339-341)		

Figure S1. Molecular structure of (WCA-IDipp)BiCl₂·C₆H₆ (2·C₆H₆); thermal ellipsoids are drawn at 50% probability. Hydrogen atoms and non-coordinated solvent molecules are omitted for clarity.

S3.2 (WCA-IDipp)₂Bi₂ (3) Table S2 Crystallographic data for compound 3.

Compound	3		
Identification code (CCDC)	2050052		
Empirical formula	C51H41BBiF15N2		
Formula weight	1186.65		
Temperature	100(2) К		
Wavelength	0.71073 Å		
Instrument (scan mode)	XtaLAB Synergy, Single source at offset/far, HyPix (w scan)		
Crystal system	Monoclinic		
Space group	P21/n		
Unit cell dimensions	a = 15.4427(2) Å	a= 90°	
	b = 12.47520(10) Å	b= 96.8350(10)°	
	c = 24.6006(2) Å	g = 90°	
Volume	4705.64(8) Å3		
Z	4		
Density (calculated)	1.675 Mg/m3		
Absorption coefficient	3.845 mm-1		
F(000)	2336		
Crystal habitus	prism (clear purple)		
Crystal size	0.419 x 0.127 x 0.047 mm3		
Theta range for data collection	1.482 to 35.949°		
Index ranges	-25<=h<=25, -20<=k<=18, -40<=l<=40		
Reflections collected	375218		
Independent reflections	21102 [R(int) = 0.0690]		
Completeness to theta = 25.242°	100.0 %		
Absorption correction	Gaussian		
Max. and min. transmission	1.000 and 0.386		
Refinement method	Full-matrix least-squares on F2		
Data / restraints / parameters	21102 / 42 / 639		
Goodness-of-fit on F2	1.049		
Final R indices [I>2sigma(I)]	R1 = 0.0556, wR2 = 0.1292		
R indices (all data)	R1 = 0.0840, wR2 = 0.1401		
Largest diff. peak and hole	4.361 and -1.194 e.Å-3		
Solution	SHELXS-2014/5 (G. M. Sheldrick, Acta Cryst., 2015, A71, 3-8)		
Refinement	SHELXL-2018/3 (G. M. Sheldrick, Acta Cryst., 2008, A64, 112-		
	122)		
Interface	OLEX2 v1.2 (O. V. Dolomanov et al., J. Appl. Cryst., 2009, 42, 339-341)		

Figure S2. Molecular structure of (WCA-IDipp)₂Bi₂ (3); thermal ellipsoids are drawn at 50% probability. Hydrogen atoms and non-coordinated solvent molecules are omitted for clarity.

Figure S3. ¹H NMR spectrum (600 MHz; C₆D₆, 278 K) of (WCA-IDipp)BiCl₂ (2).

Figure S4. ¹¹B NMR spectrum (96 MHz; C₆D₆, 278 K) of (WCA-IDipp)BiCl₂ (2).

Figure S5. ¹³C NMR spectrum (151 MHz, C₆D₆, 278 K) of (WCA-IDipp)BiCl₂ (2).

Figure S6. ¹⁹F NMR spectrum (282 MHz, C₆D₆, 278 K) of (WCA-IDipp)BiCl₂ (2).

Figure S7. ¹H NMR spectrum (600 MHz, THF-*d*₈, 278 K) of (WCA-IDipp)₂Bi₂ (**3**).

Figure S8. ¹¹B NMR spectrum (96 MHz, THF-*d*₈, 278 K) of (WCA-IDipp)₂Bi₂ (**3**).

Figure S9. ¹³C NMR spectrum (151 MHz, C₆D₆, 278 K) of (WCA-IDipp)₂Bi₂ (3).

Figure S10. ¹⁹F NMR spectrum (282 MHz, THF-*d*₈, 278 K) of (WCA-IDipp)₂Bi₂ (3).

Figure S11. UV/Vis spectrum of (WCA-IDipp) $_2Bi_2$ (3, 2·10⁻⁴ M) in THF at room temperature.

Figure S12. Absorbances at 366 and 532 nm for a dilution series with linear fits.

S6 References

[1] L. P. Ho, A. Nasr, P. G. Jones, A. Altun, F. Neese, G. Bistoni and M. Tamm, *Chem. Eur. J.*, 2018, **24**, 18922–18932.

[2] a) R. A. Sulzbach and A. F. M. Iqbal, *Angew. Chem.*, 1971, **83**, 145; b) P. K. Majhi, H. Ikeda, T. Sasamori, H. Tsurugi, K. Mashima and N. Tokitoh, *Organometallics*, 2017, **36**, 1224–1226.

[3] CrysAlisPRO, Oxford Diffraction/Agilent Technologies UK Ltd, Yarnton, England.

[4] Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112.