Supporting Information

Aggregated manganese complex-nanolayered manganese oxide: A new hybrid molecularinorganic material

Mahya Salmanion,^a Pavlo Aleshkevych,^b Zvonko Jagličić,^c and Mohammad Mahdi Najafpour^{a,d,e*}

^aDepartment of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran

^bInstitute of Physics, Polish Academy of Sciences, Warsaw, 02-668, Poland

^cFaculty of Civil and Geodetic Engineering & Institute of Mathematics, Physics and Mechanics, University of Ljubljana, 1000 Ljubljana, Slovenia

^dCenter of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran

^eResearch Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran

*Corresponding author: Tel: (+98) 24 3315 3201, E-mail: <u>mmnajafpour@iasbs.ac.ir</u> (MMN).

Table of contents

Title	Page
Experimental Section	S4
Figure S1 (XRD patterns for layered Mn oxide, TGA for compound 1)	S5
Figure S2 (DSC for compound 1)	S6
Figure S3 (TGA for compound 2)	S7
Figure S4 (DSC for compound 2)	S8
Figure S5 (CHN analyses for compounds 1 and 2)	S9
Figure S6 (images of compound 1 as dispersed particles in water)	S10
Figure S7 (SEM images of compound 1 as dried particles)	S11
Figure S8 (SEM images of compound 2 as dried particles)	S12
Figure S9 (SEM-EDX mapping images of compound 1)	S13
Figure S10 (SEM-EDX mapping images of compound 2)	S14
Figure S11 (HRTEM images of compound 1)	S15
Figure S12 (HRTEM images of compound 2)	S16
Figure S13 (BET analysis for compound 1)	S17
Figure S14 (BET analysis for compound 2)	S18
Figure S15 (XPS spectra for compound 1)	S19
Figure S16 (XPS spectra for compound 2)	S20

Experimental Section

Materials

All reagents and solvents were obtained from commercial sources and used without further purification, unless otherwise stated. 2,4,6-tris(2-pyridyl)-1,3,5-triazine, manganese(II) chloride, manganese(II) acetate, H_2O_2 , and tetramethylammonium hydroxide were purchased from Merck Company. For the experiments, milli-Q water (18-20 M Ω •cm⁻¹ at 27 °C) was used.

Characterization

SEM was carried out using an LEO 1430VP microscope. HRTEM and TEM were carried out using an FEI Tecnai G² F20 transmission electron microscope, TF20 (200 kV). The X-ray powder diffraction patterns were recorded with a Bruker D8 Advance (Germany) diffractometer (CuK_{α} radiation).

X-ray Photoelectron Spectroscopy (XPS, K-ALPHA, Thermo Scientific) was used to analyze the sample surfaces. All spectra were collected using Al-K radiation (1486.6 eV), monochromatized by a twin crystal monochromator, yielding a focused X-ray spot at 3 mA × 12 kV. The alpha hemispherical analyzer was operated in the constant energy mode with survey scan pass energies of 200 eV to measure the whole energy band and 50 eV in a narrow scan to selectively measure the particular elements. XPS data were analyzed with Avantage software. A smart background function was used to estimate the experimental backgrounds, and surface elemental compositions were calculated from background-subtracted peak areas. Charge compensation was achieved with the system flood gun that provided low energy electrons and low energy argon ions from a single source. The penetration depth was around 3 nm. FTIR spectra of the materials prepared as KBr pellets were recorded on a Bruker vector 22 in the range between 400 and 4000 cm⁻¹. Magnetic properties were investigated using a Quantum Design MPMS-XL-5 magnetometer (compound 1 (48.40 mg); complex 1 (8.32 mg); compound 2 (12.92 mg)). The EPR measurements were carried out using a Bruker EMX spectrometer working at a fixed frequency of 9.25 GHz (X-band). A 100 kHz magnetic field modulation and phase-sensitive detection were used to record the derivative of the absorbed microwave power. The amplitude of absorption was normalized by the mass of samples to compare different samples. UV-Vis spectra for solid state materials and materials in solution were performed UV-Vis-NIR spectrophotometer (Varian, Model: Cary 5E) and Pharmacia Biotech ultrospec 3100, respectively.

а

Figure S1 The phase conversation and XRD patterns for layered Mn oxide after ten hours under the reported temperature; At 400-600 °C, a conversion to Mn_2O_3 was observed (a). TGA for **compound 1** (b).

S5

Figure S2 DSC for **compound 1**.

Figure S3 TGA for **compound 2**.

Figure S4 DSC for **compound 2**.

Figure S5 CHN analyses for **compounds 1** (left) and **2** (right).

Figure S6 SEM images of **compound 1** as dispersed particles in water with different magnifications.

Figure S7 SEM images of **compound 1** as dried particles with different magnifications.

Figure S8 SEM images of **compound 2** as dried particles with different magnifications.

Figure S9 SEM-EDX mapping images of **compound 1** as dried particles.

Figure S10 SEM-EDX mapping images of **compound 2** as dried particles.

Figure S11 (HR)TEM images of **compound 1** as dried particles with different magnifications.

Figure S12 (HR)TEM images of **compound 2** as dried particles with different magnifications.

Figure S13 BET analysis for **compound 1**.

Figure S14 BET analysis for compound 2.

Figure S15 XPS spectra for **compounds 1** (a,b) and **2** (c,d).

Figure S16 XPS spectra for Mn 2p, Mn 3s, C 1s, and N 1s for compounds 2 (a-d).