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Fig. S1. FT-IR spectra of complex 1.



A)

B)

Fig. S2. ESI Q-TOF mass spectrum of the complex 1 (A) dissolved in methanol. The 

spectrum was acquired in the positive mode. Instrumental settings were: capillary voltage 2.8 



kV, cone voltage 32 V, desolvation gas 650 L/h, desolvation temperature 350 °C and source 

temperature 120 °C. The isotopic distribution of the major peak from the spectrum (m/z 

495.0542 in (A)) is shown in Figure (B). The theoretical and experimentally obtained isotopic 

distributions are shown in parallel. 
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Fig. S3. UV-Vis spectra of complexes 1 – 3 in water over a 24 h period. [Ru(II)] = 1 x 10-4 M, 

T = 25 ºC. 
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Fig. S4. UV-Vis spectra of complexes 1 – 3 in 10 mM Tris-HCl over a 24 h period. [Ru(III)] 

= 1 x 10-4 M, T = 25 ºC.
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Fig. S5. Time evolution of UV-Vis spectra during the interaction of the complex 1 with 5'-

GMP, L-His and L-Met in 10 mM Tris-HCl buffer (pH = 7.4) at 310 K.
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Fig. S6. Time evolution of UV-Vis spectra during the interaction of the complex 2 with 5'-

GMP, L-His and L-Met in 10 mM Tris-HCl buffer (pH = 7.4) at 310 K.
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Fig. S7. Time evolution of UV-Vis spectra during the interaction of the complex 3 with 5'-

GMP and L-His in 10 mM Tris-HCl buffer (pH = 7.4) at 310 K.
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Fig. S8. Time evolution of UV-Vis difference spectra during the interaction of the complex 1 

with 5'-GMP, L-His and L-Met in 10 mM Tris-HCl buffer (pH = 7.4)  at 310 K. ΔA = At - A0, 

where At = absorbance at time t and A0 = absorbance at the time at which the first spectrum 

was recorded
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Fig. S9. Time evolution of UV-Vis difference spectra during the interaction of the complex 2 

with 5'-GMP, L-His and L-Met in 10 mM Tris-HCl buffer (pH = 7.4)  at 310 K. ΔA = At - A0, 



where At = absorbance at time t and A0 = absorbance at the time at which the first spectrum 

was recorded
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Fig. S10. Time evolution of UV-Vis difference spectra during the interaction of the complex 

3 with 5'-GMP, L-His and L-Met in 10 mM Tris-HCl buffer (pH = 7.4)  at 310 K. ΔA = At - 

A0, where At = absorbance at time t and A0 = absorbance at the time at which the first 

spectrum was recorded



Fig. S11. Pseudo-first order rate constants, kobs, as a function of nucleophile concentration 

and temperature for the substitution reaction of complex 1 with L-His and L-Met in 10 mM 

Tris-HCl/150 mM NaCl (pH=7.4).



Fig. S12. Pseudo-first order rate constants, kobs, as a function of nucleophile concentration for 

the substitution reaction of complex 2 with 5'-GMP, L-His and L-Met in 10 mM Tris-HCl/150 

mM NaCl (pH=7.4).

Fig. S13. Pseudo-first order rate constants, kobs, as a function of nucleophile concentration for 

the substitution reaction of complex 3 with 5'-GMP, L-His and L-Met in 10 mM Tris-HCl/150 

mM NaCl (pH=7.4).

,



Fig. S14. Eyring plots for the reactions of complex 1 with 5'-GMP (up) and L-Met (down) in 

10 mM Tris-HCl/150 mM NaCl (pH=7.4).



Fig. S15. Calculated (ωB97XD/def2-SVP) structure of a trans-[RuCl2(H2Lt-Bu)Gua]+ complex 

with selected hydrogen bond presented in angstoms.



DNA-binding studies

Calculation of DNA-binding constants

In order to compare quantitatively the binding strength of the complexes, the intrinsic binding 

constants Kb were determined by monitoring the changes in absorption at the MLCT band 

with increasing concentration of CT DNA using the following equation (S1)S1

[DNA]/(εA – εf) = [DNA]/(εb – εf) + 1/[Kb(εb– εf)]                                                                (S1)

Kb is given by the ratio of slope to the y intercept in plots [DNA]/(εA – εf) versus [DNA] (Fig. 

S17), where [DNA] is the concentration of DNA in base pairs, εA = Aobsd/[complex], εf is the 

extinction coefficient for the unbound complex and εb is the extinction coefficient for the 

complex in the fully bound form.

Stern-Volmer equation for EB competitive studies

The relative binding of complexes to CT-DNA is described by Stern-Volmer equation (S2)S2: 

I0/I = 1+ Ksv[Q]                                                                                                                      (S2)

where I0 and I are the emission intensities in the absence and the presence of the quencher 

(complexes 1, 2 or 3), respectively, [Q] is the total concentration of quencher, Ksv is the Stern-

Volmer quenching constant, which can be obtained from the slope of the plot of I0/I versus 

[Q] (Fig. S19).

Stern-Volmer equation for HSA quenching studies

Fluorescence quenching is described by Stern–Volmer equation:

I0/I = 1+ kq τ0 [Q] = 1+ Ksv[Q]                                                                                             (S3)

where I0 = the initial tryptophan fluorescence intensity of HSA, I = the tryptophan 

fluorescence intensity of HSA after the addition of the quencher, kq = the quenching rate 

constants of HSA, Ksv = Stern-Volmer quenching constant, τ0 = the average lifetime of HSA 

without the quencher, [Q] = the concentration of the quencher respectively.

Ksv = kqτ0                                                                                                                          (S4)

and, taking as fluorescence lifetime (τ0) of tryptophan in HSA at around 10-8 s, Ksv (M-1) can 

be obtained by the slope of the diagram I0/I vs [Q] (Stern-Volmer plots, Fig. S22), and 

subsequently the approximate kq (M-1 s-1) may be calculated.S2

Scatchard equation for HSA quenching studies

From Scatchard equation:

r/Df = nK – rK                                                                                                               (S5)



where r (r = ΔI/I0) is the moles of drug bound per mole of protein and Df is the molar 

concentration of free metal complex. The association binding constant K (M−1) may be 

calculated from the slope in the Scatchard plots r/Df vs r and the number of binding sites per 

albumin (n) is given by the ratio of y intercept to the slope (Scatchard plots, Fig. S23).S3
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Fig. S16. Absorption spectra of complexes 1–3 in 10 mM Tris-HCl (150 mM NaCl, pH 7.4) 

upon addition of CT DNA. [Ru] = 1.30 x 10-5 M, [DNA] = (0.13-1.30) x 10-5 M. Arrows 

show the absorbance changing upon increasing CT DNA concentrations.



Fig. S17. Plots of [DNA]/(εA – εf) versus [DNA] for the complexes 1–3.
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Fig. S18. Emission spectra of EB bound to DNA in the presence of complexes 1 – 3. [EB] = 

80 μM, [DNA] = 80 μM; [Ru] = 0–80 μM; λex = 527 nm. The arrows show the intensity 

changes upon increased concentrations of the complexes.





Fig. S19. Stern-Volmer quenching plot of EB-DNA for complexes 1 – 3.



Fig. S20. Computational docking model illustrating interactions between investigated 

complexes 1 – 3 and A) DNA with the canonical gap, B) DNA with the intercalation gap; C) 



Possibilities of formation a hydrogen bond (blue doted lines) between investigated complexes 

and the DNA fragments.
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Fig. S21. Emission spectra of HSA in the presence of complexes 1 – 3. [HSA] = [Ru] = 0–80 

μM; λex = 295 nm. The arrows show the intensity changes upon increasing concentrations of 

the complexes 



Fig. S22. Stern-Volmer quenching plot of HSA for complexes 1 – 3.





Fig. S23. Scatchard plot of HSA for complexes 1 – 3.



Fig. S24. Best poses with HSA for complexes 1 – 3 aMolDock, Docking, and Rerank scoring 

functions, and bHbond values: A) molecular docking results illustrated regarding the HSA 

protein’s backbone; B) complex embedded inside the active site of HSA proteins in the 

electrostatic view; C) binding site of investigated complexes on HSA proteins and selected 

amino acid residues represented by stick models. Hydrogen bonds shown in blue dotted lines.



Fig. S25. The cytotoxicity of Ru(III) complex 1 against the murine colon carcinoma (CT26) 

cell line against different concentration after 72 h determined by MTT assay. Data are 

expressed as the mean±standard deviation (mean±SD).

A)                                                                    B)

Fig. S26. Effects of ruthenium(III) complex on apoptosis of murine colon carcinoma CT26 
cells. A) Representative dot plots illustrate population of viable (AnnV-PI-) early apoptotic 
(AnnV+PI-), late apoptotic (AnnV+PI+) and necrotic (AnnV-PI+) cells. B) Apoptosis of 
untreated, and 1, bis-pyrazolylpyridine ligand and oxaliplatin treated CT26 cells were 
analyzed by flow cytometry using Annexin V-FITC and PI double staining. The data are 
presented as means ± SD of a three independent experiment, *p < 0.05 indicate difference 
between treated and untreated cells. 



A)                                                                     B)

              
Fig. S27. Complex 1 showed weak expression of Noxa protein in CT26 cells (34.87%) 
compared to untreated cells (27.60%). A) Percentage of Noxa positive CT26 cells exposed to 
1, bis-pyrazolylpyridine ligand or oxaliplatin (IC50 value) for 24 h determined by flow 
cytometry presented as the mean + SD from three independent experiments. Data were 
analyzed with Student’s t test: *p < 0.05. B) Representative histogram of Noxa expression 
(mean fluorescence intensity, MFI) on CT26 cells (untreated and complex 1, bis-
pyrazolylpyridine ligand or oxaliplatin treated).



A)                                                                 B)

Fig. S28. Ruthenium complex 1 reduces the expression of Ki67 in CT26 cells. A) Percentage 
of Ki67 positive CT26 cells exposed to 1, bis-pyrazolylpyridine ligand or oxaliplatin (IC50 
value) for 24 h determined by flow cytometry presented as the mean + SD from three 
independent experiments. Data were analyzed with Student’s t test: *p < 0.05, **p < 0.01. B) 
Representative histogram of Ki67 expression (mean fluorescence intensity, MFI) on CT26 
cells (untreated and complex 1, bis-pyrazolylpyridine ligand or oxaliplatin treated).

Ruthenium(III) complex 1 is well tolerated 

In the present study, 1 was administered intravenously at the effective dose (10 mg/kg 

body weight) to evaluate the toxicological impact on treated mice. The toxicity was assessed 

by measuring alanine (ALT) and aspartate transaminases (AST), urea and creatinine in the 

serum of experimental BALB/c mice on the 21st day after the application of 1. The results 

indicated that 1 in that dose was toxic to cancer cells and safe on liver and kidney cells (Fig. 

S29). There was no significant difference in the values of AST, ALT, urea and creatinine in 

the serum of 1-treated mice compared to the control group (Fig. S29). The increased survival 

of 1 treated tumour bearing mice, significant reduction of colon cancer volume and weight 

(Figure 8), the lower incidence of metastases and the lower surface of the lung tissue affected 

by the metastases (Figure 9) in mice treated with 1, significant cytotoxicity toward CT26 cells 

(Figure S25), with no significant hepato- and nephro-toxicity (Figure S29), suggest selective 

toxicity of 1 toward tumor cells.  



 

 

 

untreated 

Fig. S29. Evaluation of systemic toxicity caused by i.p. application of ruthenium(III) complex 

1. Concentration of urea, creatinine, ALT, and AST in the serum of tumor-bearing and mice 

without inoculated tumor cells, after treatment with 1 or oxaliplatin. The data are expressed as 

mean ± SD and statistical significance was determined by Student's t test.



Table S1. Observed pseudo-first order rate constants as a function of complex concentration 

and temperature for the reaction between complex [Ru(H2LtBu)Cl3] (1) and 5'-GMP (L) in 10 

mM Tris buffer (150 mM NaCl, pH = 7.4).

t (ºC) CL [10-3 M] kobs [10-4 s-1]
15.0

25.0

37.0

5.00
4.10
3.15
2.20
1.30

5.00
4.10
3.15
2.20
1.30

5.00

2.92(2)
2.40(3)
2.07(2)
1.84(3)
1.25(3)

3.80(3)
3.02(3)
2.42(2)
2.09(3)
1.58(3)

6.00(3)
4.10 5.03(2)
3.15 4.02(3)
2.20 3.00(3)
1.30 2.20(3)

Table S2. Observed pseudo-first order rate constants as a function of complex concentration 

and temperature for the reaction between complex [Ru(H2LtBu)Cl3] (1) and L-Met (L) in 10 

mM Tris buffer (150 mM NaCl, pH = 7.4).

t (ºC) CL [10-3 M] kobs [10-4 s-1]
15.0

25.0

37.0

5.00
4.10
3.15
2.20
1.30

5.00
4.10
3.15
2.20
1.30

5.00

2.20(2)
1.86(3)
1.55(2)
1.32(3)
1.00(3)

2.74(3)
2.15(3)
1.75(2)
1.52(3)
1.20(3)

5.20(3)
4.10 4.70(2)
3.15 4.40(3)
2.20 3.84(3)
1.30 3.30(3)



Table S3. Observed pseudo-first order rate constants as a function of complex concentration 

and temperature for the reaction between complex [Ru(H2LtBu)Cl3] (1) and L-His (L) in 10 

mM Tris buffer (150 mM NaCl, pH = 7.4).

t ºC CL [10-3 M] kobs [10-4 s-1]
37 4.10 4.80(3)

3.15 4.20(2)
2.20 3.12(3)
1.60 2.65(3)
1.30 2.20(3)

Table S4. Observed pseudo-first order rate constants as a function of complex concentration 

and temperature for the reaction between complex [Ru(Cl-tpy)Cl3] (2) and 5'-GMP (L) in 10 

mM Tris buffer (150 mM NaCl, pH = 7.4).

t ºC CL [10-3 M] kobs [10-3 s-1]

37.0 5.00 1.87(2)

4.10 1.61(3)

3.15 1.40(2)

2.20 1.20(3)

1.30 0.85(3)

Table S5. Observed pseudo-first order rate constants as a function of complex concentration 

and temperature for the reaction between complex [Ru(Cl-tpy)Cl3] (2) and L-His (L) in 10 

mM Tris buffer (150 mM NaCl, pH = 7.4).

t ºC CL [10-3 M] kobs [10-3 s-1]

37.0 5.00 1.50(2)

4.10 1.30(3)

3.15 1.10(2)

2.20 0.93(3)

1.30 0.77(3)



Table S6. Observed pseudo-first order rate constants as a function of complex concentration 

and temperature for the reaction between complex [Ru(Cl-tpy)Cl3] (2) and L-Met (L) in 10 

mM Tris buffer (150 mM NaCl, pH = 7.4).

t ºC CL [10-3 M] kobs [10-3 s-1]

37.0 5.00 0.99(2)

4.10 0.85(3)

3.15 0.80(2)

2.20 0.72(3)

1.30 0.60(3)

Table S7. Observed pseudo-first order rate constants as a function of complex concentration 

and temperature for the reaction between complex [Ru(Cl-Ph-tpy)Cl3] (3) and 5'-GMP (L) in 

10 mM Tris buffer (150 mM NaCl, pH = 7.4).

t ºC CL [10-3 M] kobs [10-3 s-1]

37.0 5.00 12.00(2)

4.10 9.59(3)

3.15 8.50(2)

2.20 6.70(3)

1.30 5.40(3)

Table S8. Observed pseudo-first order rate constants as a function of complex concentration 

and temperature for the reaction between complex [Ru(Cl-Ph-tpy)Cl3] (3) and L-His (L) in 10 

mM Tris buffer (150 mM NaCl, pH = 7.4).

t ºC CL [10-3 M] kobs [10-3 s-1]

37.0 5.00 8.60(2)

4.10 7.80(3)

3.15 6.90(2)

2.20 5.90(3)

1.30 4.10(3)



Table S9. Observed pseudo-first order rate constants as a function of complex concentration 

and temperature for the reaction between complex [Ru(Cl-Ph-tpy)Cl3] (3) and L-Met (L) in 

10 mM Tris buffer (150 mM NaCl, pH = 7.4).

t ºC CL [10-3 M] kobs [10-3 s-1]

37.0 5.00 4.40(2)

4.10 3.50(3)

3.15 2.80(2)

2.20 2.00(3)

1.30 1.50(3)

Table S10. IC50 values (μM) of tested complexes against CT26 cells determined by MTT 

assay after 24 and 72 hours of exposure presented as mean ±SD.

CT26IC50 values (μM)
24 h 72 h

1 50.8 ± 7.2 7.5 ± 2.0
bis-pyrazolylpyridine ligand 146.2 ± 20.9 33.8 ± 7.2
Oxaliplatin 97.1 ± 16.2 3.7 ± 1.0


