Supporting Information For

A pyridyl-decorated Zr-organic framework for enhanced gas separation and CO₂ transformation

Yong-Liang Liu^a, Yanqing Di^a, Fengying Chen^a, Chunsheng Zhou^{a*} and Bo Liu^{b*}

^{*a*}College of Chemical Engineering and Modern Materials, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shaanxi Engineering Research Center for Mineral Resources Clean & Efficient Conversion and New Materials, Shang Luo University, Shang Luo, 726000, P. R. China

^bCollege of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, P.

R. China

*E-mail: chemliubo@nwsuaf.edu.cn; slzhoucs@126.com.

Experimental section

Py-UiO-66 was prepared by adding $ZrCl_4$ (47 mg), 3-(2',5'-dicarboxylphenyl)pyridine acid (49 mg), and acetic acid (1.8 mL) successively into 5 mL of N,Ndimethylformamide (DMF) in a 10 mL screw-capped glass vial. The mixture was sonicated sufficiently and capped tightly. The glass vial was heated at 120 °C for 48 h and then slowly cooled to room temperature. The resulting white power were filtered, washed with a small amount of DMF and methanol and air-dried with ~67% yield.

Sorption Measurements.

All the gas sorption isotherms were measured by using a ASAP 2020M adsorption equipment. The activated samples were prepared by soaking the as-synthesized samples

in methanol for 3 days and subsequently drying the material overnight at 140 °C under vacuum to remove the solvent molecules prior to measurements.

Figure S1. The SEM images of as-synthesized Py-UiO-66.

IAST adsorption selectivity calculation:

The experimental isotherm data for pure C_2H_2 , CO_2 , and CH_4 (measured at 298) were fitted using a dual Langmuir-Freundlich (L-F) model:

$$q = \frac{a_1^* b_1^* P^{1/c1}}{1 + b_1^* P^{1/c1}} + \frac{a_2^* b_2^* P^{1/c2}}{1 + b_1^* P^{1/c1}}$$

Where q and p are adsorbed amounts and pressures of component i, respectively.

The adsorption selectivities for binary mixtures of C₂H₂/CH₄ and CO₂/CH₄, defined by

$$S_{i/j} = \frac{x_i * y_j}{x_j * y_i}$$

were calculated using the Ideal Adsorption Solution Theory (IAST) of Myers and Prausnitz.

Where x_i is the mole fraction of component i in the adsorbed phase and y_i is the mole fraction of component i in the bulk.

Figure S2. C_2H_2 adsorption isotherms of Py-UiO-66 with fitting by L-F model: a1 = 2.04275, b1 = 6.8237×10^{-4} , c1 = 1.34667, a2 = 2.02034, b2 = 0.05177, c2 = 0.87805, Chi^2 = 1.33524×10^{-6} , R^2 = 1; CO₂ adsorption isotherms of Py-UiO-66 with fitting by L-F model: a1 = 1.37277, b1 = 0.0209, c1 = 0.9475, a2 = 7.31808, b2 = 8.27011×10^{-4} , c2 = 0.98282, Chi^2 = 2.71916×10^{-7} , R^2 = 1; CH₄ adsorption isotherms of Py-UiO-66 with fitting by L-F model: a1 = 0.30952, b1 = 0.01955, c1 = 1.00146, a2 = 0.90831, b2 = 0.00024, c2 = 1.54606, Chi^2 = 1.7122×10^{-7} , R^2 = 0.99999.

Calculation of sorption heat for C₂H₂, CO₂ and CH₄ uptakes using Virial 2 model

$$\ln P = \ln N + 1 / T \sum_{i=0}^{m} aiN^{i} + \sum_{i=0}^{n} biN^{i} \qquad Q_{st} = -R \sum_{i=0}^{m} aiN^{i}$$

The above equation was applied to fit the combined C_2H_2 , CO_2 and CH_4 and isotherm data for Py-UiO-66 at 273 and 298 K, where *P* is the pressure, *N* is the adsorbed amount, *T* is the temperature, *ai* and *bi* are virial coefficients, and *m* and *n* are the number of coefficients used to describe the isotherms. Q_{st} is the coverage-dependent enthalpy of adsorption and *R* is the universal gas constant.

Figure S3. C_2H_2 adsorption isotherms for Py-UiO-66 with fitting by Virial 2 model. Fitting results: a0 = -4141.31876, a1 = -3.71155, a2 = 0.63667, a3 = -0.00377, $a4 = -9.409 \times 10^{-6}$, b0 = 14.87678, b1 = 0.05536, b2 = -0.00254, $b3 = 1.79743 \times 10^{-5}$, $Chi^2 = 8.22299 \times 10^{-6}$, $R^2 = 0.99999$; CO₂ adsorption isotherms for Py-UiO-66 with fitting by Virial 2 model. Fitting results: a0 = -3697.89527, a1 = -2.50709, a2 = 0.28829, a3 = -0.00193, $a4 = -1.25008 \times 10^{-6}$, b0 = 14.01509, b1 = 0.02854, b2 = -0.00112, $b3 = 7.83869 \times 10^{-6}$, $Chi^2 = 7.29667 \times 10^{-6}$, $R^2 = 0.99999$.