Electronic Supplementary Information

Spray-drying Assembly of 3D N, P-Co-doped Graphene Microspheres Entrenched with Core-Shell CoP/MoP@C Nanoparticles for Enhanced Lithium-Ion Storage

Muhammad Ishaq, Maher Jabeen, Peiran Wang, Yu-Shi He,* Xiao-Zhen Liao, and Zi-Feng Ma

Shanghai Electrochemical Energy Devices Research Centre, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. E-mail: <u>ys-he@sjtu.edu.cn</u>

Direct agents	Phosphorus (P)	Metal Precursors	Methods	Ref.
	Precursors			
	White Phosphorus		Ball milling	1, 2
Pure Phosphorus	Red Phosphorus	Metal particles	Calcination	3
(P)	Black Phosphorus		Hydrothermal (red P)	4
			Solvothermal (red P)	5
	Trioctylphosphine			6, 7
	(TOP)		Calcination	
	Trictylphosphine oxide			8
Metallo-organic	(TOPO)	Organometallic		
compounds	Trimethylsilylphosphine	Particle		9
	(TMSP)			
	Tributylphosphine (TBP)		Solvothermal reaction	10
	Triphenylphosphine			11
	(TPP)			
	P ₄	Metal oxides	Hydrothermal reaction	12, 13
	H ₂ PO ₂ -	Metal halides	Temperature program	14, 15
PH ₃ gas	PO ₃ ³⁻	Metal phosphates	reduction	16
	PO ₄ ³	Metal phosphites	Decomposition of	17
			H ₂ PO ₂ -	
	Na ₃ P		Calcination	18
P ³⁻ and others	Ca ₃ P _{2.}	Metallic	Electrolysis	19, 20
	Etc.	compounds	Solvothermal reaction	21

Table S1. Summary of synthesis routes for metal phosphides.

Figure S1. X-ray diffraction pattern of the as-fabricated MoP@C⊂G-NP composite.

Figure S2. (a-b) SEM images of CoP@C⊂G-NP composit.

Figure S3. Structure analysis of MoP@C-NP⊂G-NP. (a-c) Low- and high-resolution SEM images of MoP@C⊂G-NP hybrid; (d-h) corresponding SEM EDS elemental mapping. Scale bar: 0.5 um. (i-k) Low-resolution TEM images and (l) high- resolution TEM lattice images show the marked d-spacing of 0.27 nm corresponding to the (110) plane of MoP@C⊂G-NP hybrid (Inset show selected area electron diffraction patterns), (m) and the corresponding lattices masked by Gatan Software 2.11.

Figure S4 Chemical composition characterization of MoP@C \subset G-NP composite. (a) Raman spectrum (b) N₂ adsorption/desorption isotherm. The inset in (b) is the corresponding pore size distribution.

Figure S5. (a) XPS survey spectrum of $CoP@C \subset G-NP$ composite. (b-f) XPS characterization of MoP@C \subset G-NP hybrid. (b) survey spectrum (c) high-resolution C 1s, (d) N 1s (e) P 2p, and (f) Mo 3d, respectively.

Figure S6. Structure analysis of CuP@C \subset G-NP. (a) XRD patterns of the CuP@C \subset G-NP hybrid; (b-c) Low- and high-resolution SEM images of CuP@C \subset G-NP hybrid; (d-h) SEM images and the corresponding elemental mapping images.

Figure S7. Electrochemical performance of the MoP@C⊂G-NP composite for lithium storage. (a) Cyclic voltammograms of the first seven cycles at scan rate of 0.1 mV s⁻¹. (b) Galvanostatic discharge-charge profiles. Voltage range: 0.01-3V versus Li⁺/Li; current density 0.1 A g⁻¹. (c) Cycling performance and the corresponding CE at 0.1 A g⁻¹. (d) Rate performance and (e) corresponding discharge-charge profiles with rates ranging from 0.1 to 2.0 A g⁻¹. (f) Long cycling performance at 1.0 A g⁻¹ after 800 cycles.

Figure S8. Long-term cycling performance of CoP@C \subset G-NP electrode at a current density of 5 A g⁻¹ after 1500 cycles.

eempesites with ether	eernie phosphilde een	iposit o s.		
Name of Electrode	Synthesis route	Capacity after cycling	Capacity retention	Ref.
CoP@C⊂PCF/NCNTs	vapor-phase phosphorization strategy	577 mAh g^{-1} after 140 cycles at 0.2 A g^{-1}	98% after 140 cycles	22
CoP@RGO	hydrothermal method	967 mAh g^{-1} after 200 cycles at 0.2 A g^{-1}	83% after 200 cycles	23
Co _x P@NC hybrid	template directing method	526 mAh g^{-1} after 600 cycles at 1.0 A g^{-1}	78% after 600 cycles	24
CoP⊂NPPCS	self-template and self- assembly strategy	437 mAh g^{-1} after 800 cycles at 1 A g^{-1}	51% after 800 cycles	25
Co-P/graphene nanocomposites	one-pot solution approach	929 mAh g^{-1} after 1000 cycles at 0.1 A g^{-1}	83% after 100 cycles	26
CoP/C nano boxes	Pyrolysis strategy	523 mAh g^{-1} after 1000 cycles at 5 A g^{-1}	60.2 % after 1000 cycles	27
Fe-CoP/CC	Hydrothermal process	1320 mAh g^{-1} after 140 cycles at 0.2 A g^{-1}	76.5% after 200 cycles	28
CoP@C-CNTs	Pyrolysis of MOFs	692 mAh g^{-1} after 100 cycles at 0.1 A g^{-1}	81% after 100 cycles	29
CoP@CNCs	Pyrolysis- phosphorization method	714.1 mAh g^{-1} after 500 cycles at 2 A g^{-1}	77 % after 500 cycles	30
CoP@NC/rGO	In situ growth of Co- MOFs	733 mAh g^{-1} after 300 cycles at 0.25 A g^{-1}	91 % after 300 cycles	31
CoP@C/BC	Hydrothermal method	351 mAh g^{-1} after 1000 cycles at 1 A g^{-1}	82.9 % after 1000 cycles	32
CoP@N/P-(C/CNTs)	Pyrolysis- phosphorization strategy	600 mAh g^{-1} after 200 cycles at 0.5 A g^{-1}	81.6 % after 200 cycles	33
CoP nanorod arrays		390 mAh g^{-1} after 900 cycles at 0.4 A g^{-1}	53% after 900 cycles	34
CoP HR@rGO	Hydrothermal and phosphorization method	714.7 mAh g^{-1} after 100 cycles at 0.1 A g^{-1}	78% after 100 cycles	35
CoP/C nanosheets	Carbonization- phosphorization strategy	612 mAh g^{-1} after 500 cycles at 0.4 A g^{-1}	77.2 % after 500 cycles	36
CoP3@PPy microcubes	Template method	650 mAh g^{-1} after 220 cycles at 0.5 A g^{-1}	81.2 % after 220 cycles	37
3D porous MoP@C hybrid	Template sol–gel method	1028 mAh g^{-1} after 100 cycles at 0.1 A g^{-1}	83.4 % after 100 cycles	38
MoP-C microspheres	Carbonization and phosphorization	1152 mÅh g^{-1} after 1200 cycles at 0.2 A g^{-1}	79.2 % after 100 cycles	39
H-MoP@rGO	Hydrothermal- phosphorization method	353.8 mAh g^{-1} after 600 cycles at 1 A g^{-1}	74.3 % after 100 cycles	40
MoP@C	Self-polymerization- phosphidation	496 mAh g^{-1} after 400 cycles at 1 A g^{-1}	93 % after 400 cycles	41

Table S2. Comparison of Li-ion storage performance of $CoP@C \subset G-NP$ and $MoP@C \subset G-NP$ composites with other Co/Mo phosphide composites.

	strategy			
MoP@NCNFs	electrospinning method	840 mAh g^{-1} after 200 cycles at 0.1 A g^{-1}	77.3 % after 200 cycles	42
CoP@C⊂G-NP	Spray-drying	494 mAh g^{-1} after 500 cycles at 0.5 A g^{-1}	86.7 % after 500 cycles	This work
CoP@C⊂G-NP	Spray-drying	438 mAh g^{-1} after 500 cycles at 1 A g^{-1}	74.7 % after 500 cycles	This work
MoP@C⊂G-NP	Spray-drying	301 mAh g^{-1} after 800 cycles at 1 A g^{-1}	87.4 % after 800 cycles	This work

Figure S9. Equivalent circuit model used for fitting the CoP@C⊂G-NP and MoP@C⊂G-NP electrodes Nyquist plots in half-cell system. Where Rb: bulk resistance of cell (electrolyte, separator, and electrodes). R_{SEI} , CPE_{SEI}: resistance and capacitance of the interfacial layer. R_{ct} , CPE_{electrode}: charge-transfer resistance and double layer capacitance. W: Warburg impedance (diffusional effects of Li ion on the host material).

Table 55. ETS Fitting parameters.				
CoP@C⊂G-NP	R _b /Ohm	R _{SEI} /Ohm	R _{ct} /Ohm	W/Ohm
Before cycles	6.5	9.5	357.7	84.6
After 25 th cycles	17.8	11.6	77.1	46.7
After 50 th cycles	4.7	10.4	165.6	48.2
MoP@C⊂G-NP				
Before cycles	9.8	10.4	334.1	83.4
After 25 th cycles	19.7	12.8	66.1	51.7
After 50 th cycles	2.8	11.4	121.4	45.1

Table S3. EIS Fitting parameters

References

- 1. T. L. Kulova and A. M. Skundin, *Russian Journal of Electrochemistry*, 2020, 56, 1-17.
- 2. J. Sun, C. Liu and P. Yang, *Journal of the American Chemical Society*, 2011, **133**, 19306-19309.
- 3. X. Li, A. M. Elshahawy, C. Guan and J. Wang, *Small*, 2017, **13**, 1701530.
- 4. Y. Fu, Q. Wei, G. Zhang and S. Sun, *Advanced Energy Materials*, 2018, **8**, 1703058.
- 5. J. Liu, X. Chen, M. Shao, C. An, W. Yu and Y. Qian, *Journal of crystal growth*, 2003, **252**, 297-301.
- 6. Y. Pan, Y. Lin, Y. Chen, Y. Liu and C. Liu, *Journal of Materials Chemistry A*, 2016, 4, 4745-4754.
- 7. M. Walter, M. I. Bodnarchuk, K. V. Kravchyk and M. V. Kovalenko, *CHIMIA International Journal for Chemistry*, 2015, **69**, 724-728.
- 8. C. Qian, F. Kim, L. Ma, F. Tsui, P. Yang and J. Liu, *Journal of the American Chemical Society*, 2004, **126**, 1195-1198.
- 9. M. Sun, H. Liu, J. Qu and J. Li, *Advanced Energy Materials*, 2016, 6, 1600087.
- 10. P. Ramasamy, K.-J. Ko, J.-W. Kang and J.-S. Lee, *Chemistry of Materials*, 2018, **30**, 3643-3647.
- 11. T. Chouki, M. Machreki and S. Emin, *International Journal of Hydrogen Energy*, 2020, **45**, 21473-21482.
- 12. A. Wang, M. Qin, J. Guan, L. Wang, H. Guo, X. Li, Y. Wang, R. Prins and Y. Hu, *Angewandte Chemie International Edition*, 2008, **47**, 6052-6054.
- 13. L. Guo, Y. Zhao and Z. Yao, *Dalton Transactions*, 2016, 45, 1225-1232.
- 14. Q. Guan and W. Li, *Journal of Catalysis*, 2010, 271, 413-415.
- 15. L. Peng, S. S. A. Shah and Z. Wei, *Chinese Journal of Catalysis*, 2018, **39**, 1575-1593.
- 16. Y. Donghang, T. Junyan, B. Rongbiao, Y. Shuyi, J. Mengnan, K. Zigui, H. Li, F. Wang and L. Caolong, *Nanoscale Research Letters*, 2021, **16**.
- 17. Z. Wang, Z. Qi, X. Fan, D. Y. Leung, J. Long, Z. Zhang, T. Miao, S. Meng, S. Chen and X. Fu, *Applied Catalysis B: Environmental*, 2021, **281**, 119443.
- 18. C. Chang, S. Zhu, X. Liu, Y. Chen, Y. Sun, Y. Tang, P. Wan and J. Pan, *Industrial & Engineering Chemistry Research*, 2021.
- 19. L. Jin, X. Zhang, W. Zhao, S. Chen, Z. Shi, J. Wang, Y. Xie, F. Liang and C. Zhao, *Langmuir*, 2019, **35**, 9161-9168.
- 20. P. Ivan, Journal of Materials Chemistry, 1994, 4, 279-283.
- 21. C. Wang, L. Chai, C. Luo and S. Liu, Applied Surface Science, 2021, 540, 148336.
- 22. K. Guo, B. Xi, R. Wei, H. Li, J. Feng and S. Xiong, *Advanced Energy Materials*, 2020, **10**, 1902913.
- 23. J. Yang, Y. Zhang, C. Sun, H. Liu, L. Li, W. Si, W. Huang, Q. Yan and X. Dong, *Nano Research*, 2016, **9**, 612-621.
- 24. Y. Liu, X. Que, X. Wu, Q. Yuan, H. Wang, J. Wu, Y. Gui and W. Gan, *Materials Today Chemistry*, 2020, **17**, 100284.
- J. Bai, B. Xi, H. Mao, Y. Lin, X. Ma, J. Feng and S. Xiong, *Advanced Materials*, 2018, 30, 1802310.
- 26. Q. Xie, D. Zeng, P. Gong, J. Huang, Y. Ma, L. Wang and D.-L. Peng, *Electrochimica Acta*, 2017, **232**, 465-473.

- 27. X. Wang, Z. Na, D. Yin, C. Wang, Y. Wu, G. Huang and L. Wang, *ACS Nano*, 2018, **12**, 12238-12246.
- 28. L. Ni, G. Chen, X. Liu, J. Han, X. Xiao, N. Zhang, S. Liang, G. Qiu and R. Ma, ACS Applied Energy Materials, 2019, 2, 406-412.
- 29. P. Zhu, Z. Zhang, P. Zhao, B. Zhang, X. Cao, J. Yu, J. Cai, Y. Huang and Z. Yang, *Carbon*, 2019, **142**, 269-277.
- 30. W. Li, R. Zhao, K. Zhou, C. Shen, X. Zhang, H. Wu, L. Ni, H. Yan, G. Diao and M. Chen, *Journal of Materials Chemistry A*, 2019, **7**, 8443-8450.
- 31. X. Zhao, D. Luo, Y. Wang and Z.-H. Liu, *Nano Research*, 2019, **12**, 2872-2880.
- 32. J. Jiang, K. Zhu, Y. Fang, H. Wang, K. Ye, J. Yan, G. Wang, K. Cheng, L. Zhou and D. Cao, *Journal of Colloid and Interface Science*, 2018, **530**, 579-585.
- 33. C. Yao, J. Xu, Y. Zhu, R. Zhang, Y. Shen and A. Xie, *Applied Surface Science*, 2020, **513**, 145777.
- 34. X. Xu, J. Liu, R. Hu, J. Liu, L. Ouyang and M. Zhu, *Chemistry A European Journal*, 2017, **23**, 5198-5204.
- 35. Z. Han, B. Wang, X. Liu, G. Wang, H. Wang and J. Bai, *Journal of Materials Science*, 2018, **53**, 8445-8459.
- 36. W. Wang, J. Li, M. Bi, Y. Zhao, M. Chen and Z. Fang, *Electrochimica Acta*, 2018, **259**, 822-829.
- 37. Q. Liu, Y. Luo, W. Chen, Y. Yan, L. Xue and W. Zhang, *Chemical Engineering Journal*, 2018, **347**, 455-461.
- 38. X. Wang, P. Sun, J. Qin, J. Wang, Y. Xiao and M. Cao, *Nanoscale*, 2016, **8**, 10330-10338.
- 39. X. Yang, Q. Li, H. Wang, J. Feng, M. Zhang, R. Yuan and Y. Chai, *Inorganic Chemistry Frontiers*, 2018, **5**, 1432-1437.
- 40. Y. Yin, L. Fan, Y. Zhang, N. Liu, N. Zhang and K. Sun, *Nanoscale*, 2019, **11**, 7129-7134.
- 41. C. Ma, C. Deng, X. Liao, Y. He, Z. Ma and H. Xiong, ACS Applied Energy Materials, 2018, 1, 7140-7145.
- 42. C. Fu, H. Yang, G. Feng, L. Wang and T. Liu, *Electrochimica Acta*, 2020, **358**, 136921.