Electronic Supplementary Information

Multifunctional Pt(IV) prodrug candidates featuring the carboplatin core and deferoxamine

Sophia Harringer,^a Michaela Hejl,^a Éva A. Enyedy,^b Michael A. Jakupec,^{a,c} Markus Galanski,^a Bernhard K. Keppler,^{a,c} Paul J. Dyson ^d and Hristo P. Varbanov^{*a,e}

^{a.} Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria

^{b.} Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, and MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary

^{c.} Research Cluster "Translational Cancer Therapy Research", Waehringer Strasse 42, 1090 Vienna, Austria

^{d.} Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

^{e.} Institute of Chemistry - Inorganic Chemistry, University of Graz, Schubertstraße 1/III, 8010 Graz, Austria

Contents

- Page S2 HPLC purity of complex A
- Page S2 Lipophilicity and solubility data (Table S1)
- Page S3 Stability of complex B in the presence of ascorbate: ¹H NMR spectra
- Page S4 Interactions with Fe³⁺, Zn²⁺ and Zr⁴⁺: UHPLC chromatograms
- Page S6 Interactions with Fe³⁺, Zn²⁺ and Zr⁴⁺: ESI-HRMS spectra
- Page S8 UV-Vis spectrophotometry and electrochemical studies
- Page S10 Cytotoxicity studies: concentration-effect curves
- Page S13 Table S2 with data from the combination studies between carboplatin and DFO in the investigated cancer cell lines
- Page S14 ¹H and ¹³C NMR spectra

Fig. S1 HPLC purity of complex **A**: product peak at 3.28 min (~ 85%) and main impurity peak at 3.02 min (~12%). A 10-30% linear gradient of MeCN in water (with 0.1% FA) over 4 min was used; UHPLC chromatogram recorded at 225 nm is shown.

Table S1 Approximate water solubility and lipophilicity chromatographic parameters (logk_w and φ_0) for the new Pt(IV)-DFO conjugates, carboplatin and DFO mesylate.

compound	aq. solub.ª	logk _w	φ ₀	
carboplatin	9.2	-0.02	-	
DFO.mes	>50	2.69	33.4	
Α	0.7	3.48	47.8	
В	2.2	3.72	48.7	
С	0.8	3.96	51.8	
D	1.1	3.83	48.4	
E	0.1	5.06	54.8	

^a approximate water solubility (given in mg/ml) was determined at room temperature by pipetting of minimal amounts of Milli-Q water to a weighted amount of substance until a clear solution is obtained (after shaking and sonication for 2-3 minutes)

Fig. S2 ¹H NMR spectra of complex **B** (1 mM) in 50 mM phosphate buffer (in D_2O , pD 7.4) after addition of 25 mM ascorbic acid (top – after 5 min, middle – after 24 h, bottom after 120 h); measurements were carried out at ambient temperature.

Fig. S3 UHPLC chromatograms of aqueous solution of complex **B** alone or in a mixture with FeCl_3 (0.5 or 1 equiv.) after 2 h of incubation at RT. A 5-85% linear gradient of MeCN in water (with 0.1% FA) was used; chromatograms recorded at 225 nm are shown.

Fig. S4 UHPLC chromatograms of complex **B** alone or in a mixture with FeCl₃ or ZrCl₄ (1 equiv.) after 2 h of incubation at RT. The new species formed (t_R = 2.40 min for the Zr adduct and t_R = 2.56 min for the Fe adduct) elute earlier than parent compound **B** (t_R = 2.77 min). A 5-85% linear gradient of MeCN in water (with 0.1% FA) was used; chromatograms recorded at 225 nm are shown.

Fig. S5 UHPLC chromatograms of complex **E** incubated with FeCl_3 (1 equiv.) over 24 h at RT. Chromatograms show time points after 1 h, 2 h and 24 h (from back to front). Formation of new species (*i.e.*, adducts with one or two coordinated Fe^{3+}) and decrease of the peak at 4.49 min, corresponding to parent complex **E**, can be observed over time.

Fig. S6 UHPLC chromatograms of complex **D** incubated with $ZnCl_2$ (1 equiv.) over 24 h at RT. Chromatograms show time points after 1 h, 2 h and 24 h (from back to front). No formation of new adducts could be observed in this case. The small decrease in absorption intensity for the parent compound peak (t_R = 3.77 min) can be attributed to precipitation from solution.

Fig. S7 UHPLC chromatograms of complex **E** incubated with $ZnCl_2$ (1 equiv.) over 24 h at RT. Chromatograms show time points after 1 h, 2 h and 24 h (from back to front). No formation of new adducts could be observed in this case. The small decrease in absorption intensity for the parent compound peak (t_R = 4.49 min) can be attributed to precipitation from solution.

Fig. S8 ESI-HRMS (+) spectra of complex **D** incubated with FeCl_3 for 5 min and 24 h at RT. Experimental spectrum *vs*. simulated isotopic pattern for the Fe(III)-loaded species is shown on the right side.

Fig. S9 Selected peaks corresponding to Fe(III) and Zr(IV) adducts found in the ESI-HRMS (-) spectra of complex **B** after 2 h of incubation with FeCl₃ or ZrCl₄, respectively. Experimental spectrum *vs.* simulated isotopic patterns for $[Fe(C_{37}H_{63}N_8O_{17}Pt)-H^+]^-$ (left) and $[Zr(C_{37}H_{63}N_8O_{17}Pt)(OH)+Cl^-]^-$ (right) are shown.

Fig. S10 Selected peaks corresponding to Zr(IV) and Zn(II) adducts of complex **B** observed in the ESI-HRMS (+) spectra of complex **B** after 2 h of incubation with $ZrCl_4$ or $ZnCl_2$, respectively. Experimental spectrum *vs.* simulated isotopic patterns for $[Zr(C_{37}H_{63}N_8O_{17}Pt)]^+$ (left) and $[Zn(C_{37}H_{64}N_8O_{17}Pt)+H^+]^+$ (right) are shown.

Fig. S11 a) UV-visible spectra recorded for the Fe(III) – complex **B** (1:1) system in the pH range 0.7 –2.0. b) Changes of λ_{max} values in dependence of pH in the Fe(III) – complex **B** / **D** / DFO (1:1) systems.

Fig. S12 Concentration distribution curves computed for the Fe(III) – complex **B** – deferiprone (1:1:x) system at pH 7.4 (x = 0 – 72.2). ($c_{\text{Fe(III)}} = c_{\text{B}} = 50 \,\mu\text{M}$, $c_{\text{deferiprone}} = 0$ - 3.61 mM, $T = 25^{\circ}\text{C}$, ionic strength = 0.20 M KCI, path length = 1 cm)

Fig. S13 Cyclic voltammograms recorded for the Fe(III) – complex **B** (solid line) and Fe(III) – complex **D** (dashed line) systems at pH 7.4. ($c_{Fe(III)} = c_{B \text{ or } D} = 0.5 \text{ mM}$; $I = 0.2 \text{ M KNO}_3$, $T = 25^{\circ}$ C, using Pt working and counter electrodes and Ag/AgCl/3M KCl reference electrode)

Fig. S14 Concentration-effect curves of compounds A-E in the cancer cell lines A549 (top), CH1/PA-1 (middle) and SW480 (bottom). Values are means \pm standard deviations from at least three independent MTT assays (exposure time: 96 h).

Fig. S15 Concentration-effect curves of compound **B**, FeCl₃ and their equimolar combination in the cancer cell lines A549 (top) and SW480 (bottom). Values are means ± standard deviations from at least three independent MTT assays (exposure time: 96 h). FeCl₃ on its own showed strong effect on the viability of SW480 cells (IC_{50} = 16 µM), but not A549 cells ($IC_{50} > 400 \mu$ M); its cytotoxicity in SW480 cells is completely abolished upon co-incubation with complex **B**, possibly as a consequence of Fe(III) chelation. Whether the conspicuous insensitivity of A549 cells to FeCl₃ is connected to their expression of ABC-transporters other than P-gp or to other mechanisms remains unclear, however.

Fig. S16 Concentration-effect curves of compounds **B** and **D**, carboplatin (Carb), DFO and the equimolar combination of the latter two in multicellular tumor spheroids of the cell line CH1/PA-1. Values are means \pm standard deviations from at least three independent resazurin assays (exposure time: 96 h).

Table S2. CI values for the combination between carboplatin and DFO in the investigated tumor cell models

Cell Line	Comb. ratio	CI values ^a at effect level of		Cl _{wt}	Symbol
	(carbopt : DFO)	75%	90%	values⁵	Symbol
CH1	1:2	0.823	0.750	0.766	++
		(0.822 ± 0.057)	(0.750 ± 0.069)		
	1:1	1.009	0.915	0.954	±
		(1.005 ± 0.094)	(0.912 ± 0.113)		
CH1	1:1	0.713	0.801	0.800	++
spheroids		(0.714 ± 0.078)	(0.805 ± 0.151)		
SW480	1:2	1.330	1.118	1.220	
		(1.329 ± 0.105)	(1.202 ± 0.134)		
	1:1	1.527	1.372	1.400	
		(1.517 ± 0.131)	(1.371 ± 0.182)		
A549	1 : 2	0.731	0.675	0.704	++
		(0.733 ± 0.121)	(0.679 ± 0.215)		
	1:1	0.715	0.552	0.610	+++
		(0.717 ± 0.109)	(0.554 ± 0.146)		
	1 : 0.16 ^d	0.648	0.533	0.559	+++
		(0.653 ± 0.173)	(0.546 ± 0.232)		

^a CI values were calculated using CompuSyn; the values in brackets represent the means \pm 95% confidence intervals, as determined from the sequential deletion analysis (S.D.A.) as a measure of the CI variability at the presented effect levels (*i.e.*, at IC₇₅ and IC₉₀).

^b Weighted average CI values, calculated as follow: $CI_{wt} = (CI_{50} + 2CI_{75} + 3CI_{90} + 4CI_{95})/10$.

^c Degrees of synergism (+ signs) or antagonism (- signs) are based on the ranges of CI_{wt} values as described in *Pharmacol. Rev.*, 2006, **58**, 621: (±) near additive effect, (+) slight synergism, (++) moderate synergism, (+++) synergism, (+++) strong synergism; antagonism is divided in the same way, except using "-" signs.

^d data taken from *PLoS One*, 2019, **14**, e0211268.

NMR spectra

Fig. S17 ¹H and ¹³C NMR spectra of precursor 2 in DMSO-d₆ at 25 °C.

Fig. S18 ¹H NMR (in DMSO-d₆) and ¹³C NMR (in DMF-d₇) spectra of precursor **3** at 25 °C.

Fig. S19 ¹H and ¹³C NMR spectra of precursor 4 in DMSO-d₆ at 25 °C.

Fig. S20 ¹H and ¹³C NMR spectra of complex A in DMSO-d₆ at 25 °C.

Fig. S21 ¹H and ¹³C NMR spectra of complex **B** in DMSO-d₆ at 25 °C.

Fig. S22 ¹H and ¹³C NMR spectra of complex C in DMSO-d₆ at 25 °C.

Fig. S23 ¹H and ¹³C NMR spectra of complex **D** in DMSO-d₆ at 25 °C.

Fig. S24 ¹H and ¹³C NMR spectra of complex E in DMSO-d₆ at 25 °C.