Spin crossover phenomenon in a 2D heterometallic coordination polymer with [Pd(SCN)₄]²⁻ building blocks

Kai-Ping Xie, Si-Guo Wu, Long-Fei Wang, Guo-Zhang Huang, Zhao-Ping Ni* and Ming-Liang Tong

Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 (P. R. China), Fax: (+)86 20 8411-2245, E-mail: nizhp@mail.sysu.edu.cn.

		2							
	120 K	298 K	150 K						
Za	5.7464(3)	5.7286(5)	5.8262(2)						
Z ^b	4.8131(2)	4.8992(4)	4.7646(2)						
l _c	2.5762(1)	2.6528(2)	3.4516(2)						
r ^d	0.47628	0.48534	0.61034						
$ heta^{\!\!\mathbf{e}}$	67.106(113)	68.946(244)	36.719(163)						
$lpha^{ m f}$	156.097(2)	161.855(4)	108.942(2)						

^aThe distance between the centroids of anthracene rings (Å); ^bThe shortest distance between the centroids of benzene rings (Å); ^cThe shortest distance of H-to-ring center (Å); ^dThe offset distance between two aromatic rings (Å); ^eThe angle between two aromatic rings (°); ^fThe angle of π -H … π (°).

Table S2. π ··· π interactions between anthracene and pyridine units in 1 and	Table S2
---	----------

		Z ^c	/ ^d	r ^e	θ
1_120 K	anth1 and py1 ^a	5.1557(3)	2.9655(11)	0.5115	67.009(138)
1_298 К	anth1 and py1 ^a	5.2495(6)	3.0354(3)	0.5210	70.504(227)
2 1EO K	anth1 and py1 ^b	4.6187(2)	2.9100(1)	1.3887	53.082(236)
2_150 K	anth2 and $py1^{b}$	4.6627(2)	2.5864(1)	1.3887	53.082(241)

^aanth1: C7-C12, x, 1+y, z; py1: C1-C5, N1, x, y, z.

^banth1: C7-C12, 3/2-x, -1/2+y, 1/2-z, z; py1: C1-C5, N1, x, y, z; anth2: C7-C12, x, y, z, py1: C1-C5, N1, 3/2-x, -1/2+y, 1/2-z.

^cThe shortest distance between the centroids of aromtic rings (Å); ^dThe shortest distance of H-toring center (Å); ^eThe offset distance between two aromatic rings (Å); ^fThe angle between two aromatic rings (°)

Figure S1. Thermogravimetric analyses of 1 and 2.

Figure S2. Magnetic susceptibility data for **1** at 2 K min⁻¹ on fresh samples (a) and 0.5 K min⁻¹ on old samples (aged about one year) (b) in the cooling and warming modes.

Figure S3. Differential scanning calorimetry (DSC) measurements of 1.

Figure S4. Powder X-ray diffraction data of 1 and 2.

Figure S5. IR spectra of 1 and 2.

Figure S6. Asymmetric units of 1 (a) and 2 (b). Hydrogen atoms are omitted for clarity.

Figure S7. Top view of the two-dimensional coordination layer in 1 at 120 K.

Figure S8. The overlaid structures of 1: green (LS), red (HS). Hydrogen atoms are omitted for clarity.