Supplementary Information

Diastereoselective self-assembly of a triple-stranded europium helicate with light modulated chiroptical property

Zhihui Zhang, Yanyan Zhou, Ting Gao, Pengfei Yan, Xiaoyan Zou* and Hongfeng Li*

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, P. R. China; School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.

Figure S1. ¹H NMR spectrum of 3 in CDCl₃.

Figure S2. ESI-MS of 3

Figure S3. ¹H NMR spectrum of 4 in CDCl₃.

Figure S4. ¹H NMR spectrum of 5 in CDCl₃.

Figure S5. ESI-TOF-MS of 5.

Figure S6. ESI-TOF-MS of L.

Figure S7. ESI-TOF-MS of $Eu_2(o-L)_3(R-BINAPO)_2(\Delta\Delta-1)$.

Figure S8. ESI-TOF-MS of $Gd_2(o-L)_3(R-BINAPO)_2(\Delta\Delta - 1)_1$.

Figure S9. ¹H NMR spectra of L, S-BINAPO, $Eu_2(o-L)_3(S-BINAPO)_2(\Lambda\Lambda-1)$ in THF- $d_{8,2}$

Figure S10. ¹⁹F NMR spectrum of Eu₂(o-L)₃(R-BINAPO)₂ ($\Delta\Delta$ -1) in THF- $d_{\delta_{\perp}}$

Figure S11. ³¹P NMR spectrum of Eu₂(o-L)₃(R-BINAPO)₂ (ΔΔ-1) in THF-d₈.

Figure S12. ¹H DOSY spectrum of Eu₂(o-L)₃(S-BINAPO)₂ (ΛΛ-1) in THF-d₈.

Figure S13. *P* in one helicate based on R-BINAPO and S-BINAPO, and the total energy of each

possible helicate. The molecular mechanic modeling was built by using the MOPAC 2016 program implemented in the LUMPAC 3.0 software with a Sparkle/AM1 model.

Figure S14. ¹H NMR spectra of o-L and pss-L in THF- d_8 .

Figure S15. ¹H NMR spectra of $Eu_2(o-L)_3(R$ -BINAPO)₂ $(o-\Delta\Delta-1)$ and $Eu_2(pss-L)_3(R$ -BINAPO)₂ (pss- $\Delta\Delta-1$) in THF- d_8 .

Figure S16. UV/Vis spectra changes of L in PSS in THF upon irradiation at 526 nm light (c = 1.0 $\times 10^{-5}$ M, I_{526 nm} = 0.4 $\times 10^{-3}$ W/cm²).

Figure S17. UV/Vis spectra changes of L in THF upon irradiation at 275 nm light (c = 1.0×10^{-5} M, $I_{275} = 1.6 \times 10^{-3}$ W/cm²).

Figure S18. UV/Vis spectra changes of $(Eu_2L_3)(R$ -BINAPO)₂ ($\Delta\Delta$ -1) in PSS in THF upon irradiation at 526 nm light (c = 3.3×10^{-6} M, $I_{526 \text{ nm}} = 0.4 \times 10^{-3}$ W/cm²).

Figure S19. UV/Vis spectra changes of $Eu_2(o-L)_3(R-BINAPO)_2 (\Delta\Delta-1)$ in THF upon irradiation at 275 nm light (c = 3.3×10^{-6} M, $I_{275} = 1.6 \times 10^{-3}$ W/cm²).

Complexes	g _{abs} (×10 ⁻⁴)				
	$\lambda = 303 \text{ nm}$	$\lambda = 336 \text{ nm}$	$\lambda = 361$ nm	$\lambda = 458 \text{ nm}$	$\lambda = 548 \text{ nm}$
ο-ΔΔ-1	-1.30	-0.69	-1.01	-	-
o-ΛΛ-1	1.34	0.67	1.05	-	-
pss- $\Delta\Delta$ -1	-2.28	-0.85	-1.11	-8.24	1.38
pss- $\Lambda\Lambda$ -1	2.21	0.87	1.09	8.22	-1.35

Table S1. g_{abs} values for $Eu_2L_3(R\text{-}BINAPO)_2~(\Delta\Delta\text{-}1)$ and $Eu_2L_3(S\text{-}BINAPO)_2~(\Lambda\Lambda\text{-}1)$ after

irradiation with UV and visible light

Figure S20. UV/Vis absorbance changes of **L** in THF on alternate excitation at 275 and 526 nm after five cycles at 293 K. *Inset:* The absorbance changes at 545 nm upon repeated alternating UV/vis irradiations.

Figure S21. UV/Vis absorbance changes of $(Eu_2L_3)(R$ -BINAPO)₂ ($\Delta\Delta$ -1) in THF on alternate excitation at 275 and 526 nm after five cycles at 293 K. *Inset:* The absorbance changes at 548 nm upon repeated alternating UV/vis irradiations.

Figure S22. UV/Vis spectra of $(Eu_2L_3)(R$ -BINAPO)₂ (pss- $\Delta\Delta$ -1) in PSS at different heating times (55 °C for 2 h in THF); no change was observed in shape and intensity, indicating no back reaction to $Eu_2(o-L)_3(R$ -BINAPO)₂ (o- $\Delta\Delta$ -1). *Insert*: Absorbance changes of the open-ring/ close-ring mixture monitored at 280, 410, and 548 nm.

Figure S23. Excitation spectra of $Eu_2(o-L)_3(R$ -BINAPO)₂ $(o-\Delta\Delta-1)$ (red line) and $Eu_2(pss-L)_3$ (R-BINAPO)₂ (pss- $\Delta\Delta$ -1) (black line) in THF (3.3 × 10⁻⁶ M).

Figure S24. Luminescence decay curves of $Eu_2(o-L)_3(R-BINAPO)_2$ ($o-\Delta\Delta-1$) (red line) and $Eu_2(pss-L)_3(R-BINAPO)_2$ ($pss-\Delta\Delta-1$) (purple line) in THF monitored at 612 nm.

Figure S25. The screenshot of the luminescence quantum yield measurement of $Eu_2(o-L)_3$ (R-BINAPO)₂ (o- $\Delta\Delta$ -1).

Figure S26. The screenshot of the luminescence quantum yield measurement of $Eu_2(pss-L)_3$ (R-BINAPO)₂ (pss- $\Delta\Delta$ -1).

Figure S27. Phosphorescence spectra of $Gd_2(o-L)_3(R-BINAPO)_2$ ($o-\Delta\Delta-1$) (red line) and $Gd_2(pss-L)_3(R-BINAPO)_2$ (pss- $\Delta\Delta-1$) (black line) at 77 K in THF.

Supplementary Notes

Supplementary Note 1. The cyclization and cycloreversion quantum yields calculation.

The quantum yields of photoisomerization reactions were measured following the reported method (Supplementary Equation 1–7). The kinetics of re-equilibration from an arbitrary initial photostationary state (A_{00}) to a new phostationary state (A_{pss}) dictated by exposure to light of a given wavelength, is monoexponential (Supplementary Figures S16–S19 and Supplementary Equation 1). The rate constant of equilibration (κ_{eq}) is given by the sum of the two apparent first-order rate constants defining the overall transition and the equilibrium constant (K_{pss}) by their ratio. κ_{ex} is the rate constants for absorption at excitation wavelength. σ_{ex} (cm² molecule⁻¹) is the absorption cross-section at excitation wavelength λ_{irr} (nm). ψ_{ex} (photons s⁻¹cm⁻²) is the photon flux. *I* (W cm⁻²) is the intensity of irradiation light, it is 1.6 mW/cm² for 275 nm and 0.4 mW/cm² for 526 nm. N_A is the Avogadro's constant. α_{pass} is the fractional population of closed form in PSS under 275 nm irradiation and calculated from ¹H NMR (Figs. S14 and S15). The concentration for L and (Eu₂L₃)(R/S-BINAPO)₂ in THF are 1.0 × 10⁻⁵ M and 3.3 × 10⁻⁶ M, respectively.

$$A(t) = A_{\text{pss}} + (A_0 - A_{\text{pss}}) e^{-\kappa eq t} (1)$$
$$\kappa_{eq} = \kappa_{0 \to c} + \kappa_{c \to 0}, (2)$$

 $K_{pss} = [Open form] / [closed form] = \kappa_{o \to c} / \kappa_{c \to o} (3)$

 $a_{\text{pss}} = K_{\text{pss}} / (1 + K_{\text{pss}}) = \kappa_{o \to c} / \kappa_{\text{eq}} (4)$

$$\kappa_{\text{ex}} = \sigma_{\text{ex}} \psi_{\text{ex}}, \sigma_{\text{ex}} = (10^3 \text{ln} 10/N_\text{A}) \varepsilon_{\text{irr}}, \psi_{\text{ex}} = 5 \times 10^{15} \lambda_{\text{irr}} I (5)$$
$$\Phi_{0 \to c} = \kappa_{0 \to c} / \kappa_{\text{ex,0}} (6)$$
$$\Phi_{c \to o} = \kappa_{c \to o} / \kappa_{\text{ex,c}} (7)$$

Supplementary Note 2. Computational Details

The ground state geometries of $Eu_2(o-L)_3(R-BINAPO)_2$ and $Eu_2(o-L)_3(S-BINAPO)_2$ were optimized by calculations using LUMPAC with a Sparkle/AM1 model implemented in the MOPAC 2016 software. The keywords used in the calculation reported here were AM1, PRECISE, BFGS, GNORM = 0.25, GEO-OK, SCFCRT = 1.D-10 (to increase the SCF convergence criterion) and XYZ (for Cartesian coordinates) (Supplementary Fig. 2 and S15).