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1. General experimental details

1.1 Air- and moisture-sensitive compounds

Air- and moisture-sensitive compounds were handled under an inert N, atmosphere, using

standard Schlenk line techniques and an MBraun Unilab glove box when required.
1.2 Commercially supplied reagents

Sublimed KO’Bu (Sigma Aldrich) was used as supplied.

1.3 Solvent preparation

Pentane, hexane, toluene and benzene were dried using an MBraun SPS-800 solvent
purification system, stored over a potassium mirror and degassed under partial vacuum before
use. Deuterated solvents were dried over K (benzene-ds) or CaH, (tetrahydrofuran-dy), distilled
under static vacuum, freeze-thaw degassed and stored over pre-activated 4 A molecular sieves

under N,.
1.4 Synthesis of literature compounds

[Pn*ZrCl,]-LiCl-thf;,! Pn*ZrCp(Cl),> Pn*TiCp(Cl),> Pn*ZrCpMe(Cl),> KO-2,6-Me-C4H3,*
K(0-2,6-Pr-C¢H3),> KO-2,6-Bu-C¢H;> and KO-2,6-Bu-4-Me-C¢H,® were synthesised
according to literature procedures. KO-4-OMe-C¢H, was synthesised according to a modified

literature procedure.’

1.5 Solution phase NMR spectroscopy

NMR spectroscopy samples of air- and moisture-sensitive compounds were prepared in a glove
box and sealed in 5 mm Young’s tap NMR tubes. 'H NMR and 3C{'H} spectra were recorded
on either a Bruker Avance III HD nanobay 400 MHz or Bruker Avance III 500 MHz NMR
spectrometer. All spectra were recorded at 298 K and referenced internally to the residual
protio solvent peak. All spectra are reported relative to tetramethylsilane (6 = 0 ppm). Two
dimensional 'H-'H and '3C-'H correlation experiments were used, when necessary, to confirm

'H and 3C assignments.
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Permethylpentalene (Pn*) methyl and carbon resonances are assigned according to:

NWT NWT
7 8 1
o @@ -
5 4 3
NWT NWT

Where NWT denotes "non-wingtip" and WT denotes "wingtip"
1.6 Elemental analysis

Samples were prepared in a glove box and sealed in glass vials under nitrogen. CHN analyses

were carried out in duplicate by Mr Stephen Boyer, London Metropolitan University.

1.7 Gel-permeation chromatography (GPC)

Gel permeation chromatography studies were performed using a Shimadzu LC-20AD
instrument at 40 °C. Two Mixed Bed PSS SDV linear S columns were used in series, with THF
as the eluent and a flow rate of 1 mL min~!. The instrument was calibrated using narrow M,
polystyrene standards (correction factor of 0.58) and polymer samples were dissolved in SEC

grade THF and filtered prior to analysis.’

1.8 MALDI-TOF mass spectrometry

Matrix-assisted laser desorption/ionisation time of flight spectra were collected by Dr Victor
Mikhailov (University of Oxford) using a Bruker MALDI Autoflex TOF MS. Samples were
run using a DCTB matrix. The DCTB matrix was prepared by mixing 10 pL of sample with
10 uL DCTB (40 mg mL™! in THF) and 2.5 uLL KTFA (5 mg mL™! in THF). 1.5 uL of the

mixed solutions were spotted on the MALDI plate and dried prior to the run.
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2. Representative NMR spectra
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Fig. S1. '"H NMR spectrum (benzene-dy (*), 400 MHz, 298 K) of Pn*Zr(O'Bu); (1).
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Fig. S2. BC{'H} NMR spectrum (benzene-ds (*), 125 MHz, 298 K) of Pn*Zr(O'Bu), (1).
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Fig. S3. "H NMR spectrum (benzene-ds (*), 400 MHz, 298 K) of Pn*Zr(0-2,6-Me-CsHz), (2).
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Fig. S4. 'H NMR spectrum (benzene-ds (*), 400 MHz, 298 K) of Pn*Zr(0O-2,6-Pr-CsHs), (3).
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Fig. S5. 3C{'H} NMR spectrum (benzene-ds(*), 101 MHz, 298 K) of Pn*Zr(0O-2,6-"Pr-CsH3),

3).
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Fig. S6. 'H NMR spectrum (tetrahydrofuran-dg (*), 400MHz, 298K) of

Pn*ZrCI(0-4-OMe-C¢Hy) (4).
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Fig. S7. BC{'H} NMR spectrum (tetrahydrofuran-dg (*), 101 MHz, 298 K) of
Pn*ZrC1(0-4-OMe-CgHy) (4).
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Fig. S8 'H NMR spectrum (benzene-ds (*), 400MHz, 298K) of
Pn*ZrCl(0-2,6-Bu-4-Me-C4H,) (6).
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Fig. S9. BC{'H} NMR spectrum (benzene-ds (*), 101 MHz,

Pn*ZrCI(0-2,6-Bu-4-Me-CsH,) (6).

298 K

f
N AN __J 233K
L A 223K

213K
203K

193 K

183 K
5 24 23 22 21 20 19 18 17 16 1.
S (ppm)

Fig. S10. Variable temperature 'H NMR spectra (toluene-dy (*),
Pn*ZrCl(0O-2,6-'Bu-4-Me-C¢H,) (6) between 183 and 298 K.
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Fig. S11. '"H NMR spectrum (benzene-dg (*), 500 MHz, 298 K) of Pn*ZrCp(O‘Bu) (7).
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Fig. S12. BC{'H} NMR spectrum (benzene-dg (*), 125 MHz, 298 K) of Pn*ZrCp(O'Bu) (7).
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Fig. S13. '"H NMR spectrum (benzene-ds (*), 500 MHz, 298 K) of Pn*ZrCp(0-2,6-Me-C¢H3)

(8).
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Fig. S14. BC{'H} NMR spectrum (benzene-ds (*), 125 MHz, 298 K) of Pn*ZrCp(O-2,6-Me-
CeHs) (8).
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Fig. S15. '"H NMR spectrum (benzene-ds (*), 500 MHz, 298 K) of Pn*ZrCp(O-2,6-Pr-C¢H3)

(9).
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Fig. S16. 3C{'H} NMR spectrum (benzene-ds (*), 125 MHz, 298 K) of Pn*ZrCp(O-2,6-'Pr-

CsHs3) (9).
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Fig. S17. '"H NMR spectrum (benzene-ds (*), 500 MHz, 298 K) of Pn*TiCp(0-2,6-Me-C¢H3)

(10).
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Fig. S18. BC{!H} NMR spectrum (benzene-ds (*), 125MHz, 298K) of
Pn*TiCp(0-2,6-Me-CgHs) (10).
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Fig. S19. 'TH NMR spectrum (benzene-ds (*), 400 MHz, 298 K) of Pn*ZrCpMe(O-2,6-Me-
Ce¢H3) (11).
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Fig. S20. 3C{!H} NMR spectrum (benzene-ds (*), 101 MHz, 298 K) of Pn*ZrCpMe¢(O-2,6-
MC-C6H3) (1 1)
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Fig. S21. 'H NMR spectrum (benzene-ds (*), 400 MHz, 298 K) of Pn*ZrCpMe(0-2,6-Pr-C¢Hj)

(12).
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Fig. S22. BC{'H} NMR spectrum (benzene-ds (*), 101 MHz, 298 K) of Pn*ZrCpMe¢(O-2,6-Pr-

CeHs) (12).
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Fig. S23. '"H NMR spectrum (benzene-dy (*), 400 MHz, 298 K) of Pn*ZrCpM¢(O-2,4-Bu-

Colly) (13).
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Fig. S24. BC{'H} NMR spectrum (benzene-ds (*), 101 MHz, 298 K) of Pn*ZrCpM¢(0O-2,4-

‘Bu-C¢Hs) (13).

3. Additional crystallographic data

3.1 Crystallographic details

Crystals were mounted on MiTeGen MicroMounts using perfluoropolyether oil and rapidly
transferred to a goniometer head on a diffractometer fitted with an Oxford Cryosystems
Cryostream open-flow nitrogen cooling device.® Data collections were carried out at 150 K
using an Oxford Diffraction Supernova diffractometer using mirror-monochromated Cu Ko
radiation (A = 1.54178 A) and the data was processed using CrysalisPro.® The structures were
solved using direct methods (SIR-921% or SHELXS!%:1%¢) or a charge flipping algorithm
(SUPERFLIP)!'! and refined by full-matrix least-squares procedures using the Win-GX

software suite.!2

An Enraf-Nonius Kappa CCD diffractometer using graphite monochromated Mo Ko radiation (A =
0.71073 A) was also used. Raw frame data were reduced using the DENZO-SMN package,'3 and
corrected for absorption using SORTAV.!# Intensity data were collected using a multi-scan method with

SCALEPACK (within DENZO-SMN).
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Compound 2 was refined as an inversion twin and compound 12 was refined as a two-
component with the HKLF 5 method.

_vrf PLAT910 091ZRT15
PROBLEM: Missing # of FCF Reflection(s) Below Theta(Min) 55

RESPONSE: 55 low-order reflections have been Omitted from the final least-squares
refinement.
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3.2. Experimental crystallographic data

Table S1. Selected experimental crystallographic data for Pn*Zr(O-2,6-Me-C¢H3), (2), Pn*Zr(O-2,6-Pr-C¢Hs), (3), Pn*ZrCl(O-2,6-'Bu-
4-Me-CgH,) (6), and Pn*ZrCpMe(0O-2,6-Pr-C¢H3) (12).

Complex Pn*Zr(0-2,6-Me-C¢H3), Pn*Zr(0-2,6-Pr-C.H;), Pn*ZrCl(0-2,6-Bu-4-Me-C¢H,;) Pn*ZrCpM¢(0-2,6-Pr-C¢H;)
Crystal Data
M, 519.81 632.06 532.29 533.87
Crystal system Monoclinic Monoclinic Monoclinic Triclinic
Space group P2./n P2./n P2./n Pl
Temperature (K) 150 150 150 150
a(A) 19.0444(3) 15.5176(2) 16.11460(10) 8.9476(2)
b (A) 9.80080(10) 10.4812(10) 9.97050(10) 10.3488(3)
c(A) 14.1408(2) 21.7454(2) 16.57600(10) 16.0319(4)
a(®) 90 90 90 92.631(2)
B () 93.3230(10) 106.515(1) 90.6800(10) 92.145(2)
7 (°) 90 90 90 115.499(2)
V(A3) 2634.95(6) 3390.83(6) 2663.09(4) 1335.79(6)
VA 4 4 4 2
Radiation type Cu Ka Cu Ka Cu Ka Cu Ka
p (mm') 3.59 0.35 4.43 3.52

Crystal size (mm) 0.20 x 0.10 x 0.09 0.40 x 0.30 x 0.10 0.20 x 0.18 x 0.15 0.12 x 0.10 x 0.08
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Data Collection

. SuperNova, Dual, Cu at zero, Nonius KappaCCD . SuperNova, Dual, Cu at zero, SuperNova, Dual, Cu at zero,
Diffractometer HKL scale pack (Otwinowski &
Atlas . Atlas Atlas
Minoe 1997), Mo
Multi-scan Multi-scan Multi-scan
CrysAlisPro 1.171.38.43b CrysAlisPro 1.171.38.43b CrysAlisPro 1.171.38.41
(Rigaku Oxford Diffraction, . (Rigaku Oxford Diffraction, (Rigaku Oxford Diffraction,
. Multi-scan from symmetry-
Absorption 2015) : 2015). 2015).
. .. : . related measurements using .. . . . . .
correction Empirical absorption correction . Empirical absorption correction Empirical absorption correction
. . ) Sortav (Blessing 1995) . . . . . )
using spherical harmonics, using spherical harmonics, using spherical harmonics,
implemented in SCALE3 implemented in SCALE3 implemented in SCALE3
ABSPACK scaling algorithm. ABSPACK scaling algorithm. ~ ABSPACK scaling algorithm.
Tnins Tmax 0.911, 1.000 0.679, 1.000 0.870,1.000
No. of measured,
independent and 26430, 5473, 4492 15861, 8330, 6699 28211, 5554, 5190 9810, 9810, 9150
observed [/ > 20(/)]
reflections
Rint 0.024 0.026 0.023 -
Refinement
R[F?>20(F?)], 0.0292, 0.0802
WR(F?), S 1.034 0.034, 0.092, 1.051 0.0216, 0.0600, 1.073 0.034,0.091, 1.10
No. of reflections 547 8330 5554 9810
No. of parameters 558 384 302 319
No. of restraints 23 0 0 0
(A/O)max 0.001 0.002 0.001 0.001
APmaxs APmin (€ A7) 0.35,-0.63 0.60, —0.62 0.33,-0.46 0.92,-0.70
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Table S2. Selected experimental crystallographic data for Pn*ZrCl(O-2,6-Me-C¢Hj), Pn*ZrCl(O-2,6-Bu-C¢H;).tmeda and [Pn*Zr(O-4-

OMe-CsHy) > (4°).

Complex Pn*ZrCl(0-2,6-Me-CH3) Pn*ZrCl(0-2,6-'‘Bu-C¢H;).tmeda [Pn*Zr(0-4-OMe-C¢H,),]»
Crystal Data
M, 434.10 676.86 523.75
Crystal system Triclinic Triclinic Triclinic
Space group Pl Pl Pl
Temperature (K) 150 150 150
a(A) 10.6046(6) 10.5832(2) 9.8414(5)
b(A) 12.2355(5) 12.6630(3) 11.4573(5)
c(A) 17.2888(8) 15.2987(3) 11.9108(5)
a(°) 75.850(4) 72.614(2) 114.746(4)
L(®) 87.114(4) 70.176(2) 92.331(4)
7 (°) 67.084(4) 67.102(2) 98.792(4)
V(A3) 2001.00(18) 1743.52(7) 1197.13(10)
VA 4 2 2
Radiation type Cu Ka Cu Ka Cu Ka
p (mm™) 5.77 4.19 4.02

Crystal size (mm)

0.16 x 0.10 x 0.05

0.18 x 0.13 x 0.10

0.17 x 0.08 x 0.04

Data Collection

Diffractometer

Absorption correction

SuperNova, Dual, Cu at zero, Atlas SuperNova, Dual, Cu at zero, Atlas

Gaussian Multi-scan
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CrysAlisPro 1.171.38.43b (Rigaku CrysAlisPro, Agilent Technologies, CrysAlisPro 1.171.38.43b (Rigaku

Oxford Diffraction, 2015). Version 1.171.35.2. Oxford Diffraction, 2015).
Numerical absorption correction based Empirical absorption correction using Numerical absorption correction
on gaussian integration over a spherical harmonics, based on gaussian integration over a

implemented in SCALE3 ABSPACK multifaceted crystal model. Empirical
scaling algorithm. absorption correction using spherical
harmonics, implemented in SCALE3

ABSPACK scaling algorithm.

multifaceted crystal model.
Empirical absorption correction using
spherical harmonics, implemented in

SCALE3 ABSPACK scaling

algorithm.
Trnins Tmax 0.475, 1.000 0.723,1.000 0.622,0.972
No. of measured, independent and 20196, 8271, 7315 35966, 7230, 7083 11326, 4939, 4685
observed [/ > 26(/)] reflections
Ri 0.028 0.016 0.027
Refinement
R[F?>20(F?)], wR(F?), S 0.058, 0.062, 1.056 0.021, 0.054, 1.035 0.0224, 0.0564, 1.045
No. of reflections 8271 7230 4939
No. of parameters 467 404 306
No. of restraints 0 25 0

(A/0) max 0.003 0.002 0.000

APmaxs APmin (€ A7) 0.37,-0.47 0.45,-0.44 0.27,-0.36

Computer programs: CrysAlisPro 1.171.39.46 (Rigaku OD, 2018), CrysAlisPro 1.171.38.41 (Rigaku OD, 2015), SUPERFLIP Palatinus, L.;
Chapuis, G. J. Appl. Cryst. 2007, 40, 786-790., SIR92 Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A. J. Appl. Cryst. 1994, 27, 435.,

SUPERFLIP. Palatinus, L.; Chapuis, G. J. Appl. Cryst. 2007, 40, 786-790., SHELXL2014 (Sheldrick, 2014), ORTEP-3 for Windows. Farrugia, L.

J. J. Appl. Cryst. 1997, 30, 565.
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4. Polymerisation data

4.1 Polymerisation graphs
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Fig. S25. Percentage conversion to PLA as a function of time of polymerisation for the ROP
of L- (black square) and rac-lactide (red circle) using Pn*TiCp(O-2,6-Me-C¢Hj).
Polymerisation conditions: 80 °C, [LA]y/[M]o = 50, [LA]o = 0.5 M and benzene-d.
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Fig. S26. In([LA]o/[LA]) as a function of time of polymerisation for the ROP of rac-lactide
using Pn*Zr(0-2,6-Pr-C¢Hs), (3) with [LA]o/[M]y = 10 (green, kos = 0.38 = 0.08 h'!),
[LA]o/[M]o =25 (blue, kops = 0.30 = 0.03 h™!") and [LA]y/[M]o = 50 (red, kops =0.18 £ 0.01 h1).
Polymerisation conditions: 80 °C, [LA]o = 0.5 M and benzene-d;.
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Fig. S27. In([LA]o/[LA]) as a function of time of polymerisation for the ROP of rac-lactide
using Pn*ZrCl(0-2,6-Bu-4-Me-C¢H,) (6) with [LA]o/[M]o = 10 (green, kyps = 0.38 £0.10 h'1),
[LA]o/[M]o =25 (blue, kops = 0.32 +0.04 h™!) and [LA]o/[M]o = 50 (red, kops = 0.18 £0.01 1),
Polymerisation conditions: 80 °C, [LA]o = 0.5 M and benzene-d.
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Fig. S28. —In(k,,,) as a function of —In([M],) for the polymerisation of rac-lactide using
Pn*Zr(0-2,6-Pr-C¢H3), (3) (red circle, slope = 0.62 + 0.15 with R> = 0.941) and
Pn*ZrCI(0O-2,6-'Bu-4-Me-C4H,) (6) (blue triangle, slope = 0.58 + 0.16 with R>=0.925).
Polymerisation conditions: 80 °C, [LA]y, = 0.5 M and benzene-dj.
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Fig. S29. kus as a function of [M], for the polymerisation of rac-lactide using
Pn*Zr(0-2,6-Pr-C¢Hs), (3) (red circle, slope = 7.17 + 2.29 h"! M™! with R* = 0.908) and
Pn*ZrC1(0-2,6-'Bu-4-Me-C¢H,) (6) (blue triangle, slope = 6.37 + 2.37h 'M! with
R?=0.879). Polymerisation conditions: 80 °C, [LA], = 0.5 M and benzene-dg.
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Fig. S30. In([LA]¢/[LA]) as a function of time of polymerisation for the ROP of rac-lactide
using Pn*Zr(0-2,6-Pr-C¢H;), (3) in benzene-ds (red circle, kops = 0.12 £ 0.01 h™!),
chloroform-d; (black circle, kys = 0.13 £+ 0.01 h'!') and tetrahydrofuran-dg (blue
circle, ky,s = 0 h™!). Polymerisation conditions: 80 °C, [LA]y/[M]y =200 and [LA]o = 2.0 M.
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Fig. S31. In([LA]o/[LA]) as a function of time of polymerisation for the ROP of rac-lactide
using Pn*ZrCl(0-2,4-Bu-Cg¢H,) (6) in benzene-ds (red triangle, kops = 0.11 + 0.01 h™!),
chloroform-d; (black triangle, kwps = 0.01 + 0.001 h™') and tetrahydrofuran-ds (blue
triangle, kq,s = 0 h™!). Polymerisation conditions: 80 °C, [LA]y/[M]o =200 and [LA]o = 2.0 M.

30 T T T T T

" 80°C
25/ = 100°C

In([LA],/[LA])

o
(&)
1

1

0.0 — T T T T
0 2 4 6 8 10

Time of polymerisation (hours)

Fig. S32. In([LA]y/[LA]) as a function of time of polymerisation for the ROP of L-lactide using
Pn*Zr(0-2,6-Me-C¢H3), (2) at 80°C (black square, ky,s = 0.30 = 0.01 h™!) and 100 °C (red
square, kops = 0.79 £0.01 h™!). Polymerisation conditions: [LA]y/[M], = 50, [LA]o = 0.5 M and

benzene-ds.
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Fig. S33. In([LA]o/[LA];) as a function of time of polymerisation for the ROP of L-lactide using
Pn*Zr(0-2,6-"Pr-CsH3), (3) at 60 °C (blue circle, kops = 0.22 + 0.01 h'!), 70 °C (green circle,
kops = 0.30£0.02 h™!) and 80 °C (red circle, kops = 0.35 + 0.01 h™!). Polymerisation conditions:
[LA]o/[M]y =50, [LA]o = 0.5 M and benzene-dj.
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Fig. S34. In([LA]o/[LA]) as a function of time of polymerisation for the ROP of rac-lactide
using Pn*Zr(0-2,6-Pr-C¢Hs), (3) at 60 °C (blue circle, kys = 0.15 + 0.01 h'!), 70 °C (green
circle, kops = 0.16 £ 0.01 h™!) and 80 °C (red circle, kops = 0.18 = 0.01 h™!). Polymerisation
conditions: [LA]y/[M]o = 50, [LA]y = 0.5 M and benzene-dg.
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4.2 Polymerisation activities, conversions and molecular weights tables

Table S3. L-Lactide polymerisation using Pn*Zr(O-2,6-Me-C¢H3), (2), Pn*Zr(O-2,6-'Pr-C¢Hs), (3), Pn*ZrCI(O-2,6-'Bu-4-Me-C¢H,) (6),
Pn*ZrCp(OBu) (7), Pn*ZrCp(0-2,6-iPr-C¢H3) (9) and Pn*ZrCpMe(O-2,6-Pr-C¢Hs) (12).

Initiator [LA]¢/[M]o [LA]y Temp. Solvent Time*  Conversion® Kobs R? M, (caled)* M, (GPC)? M,/M3
™M) (O (h) (%) (h™) (gmol™) (g mol™)
2 50 0.5 80 benzene-d; 10.6 92 0.30+0.01 0.992 - - -
3 50 0.5 80  benzene-d 6 88 0.35+0.01 0.997 6520 17398 1.62
7 50 0.5 80  benzene-dg 30 92 0.09+£0.01 0.966 - - -
9 50 0.5 80 benzene-dg 50 79 0.03 £0.001 0.998 - - -
12 50 0.5 80 benzene-d; 164 85 0.01 £0.001 0.998 - - -
2 200 2.0 80  benzene-ds 21 98 0.30£0.03 0.964 28374 30709 1.37
3 200 2.0 80 benzene-d; 28 98 0.32+0.04 0.957 28430 31327 1.28
6 200 2.0 80 benzene-d; 24 36 0.02+0.001 0.981 10598 12950 1.45
3 50 0.5 60 benzene-d; 6 74 0.22+0.01 0.992 5511 14282 1.21
3 50 0.5 70  benzene-d 6 83 0.30+0.02 0.974 6160 14346 1.62
2 50 0.5 100  benzene-ds 6 94 0.79+0.01 0.999 - - -

(a) Time polymerisation quenched; (b) Measured by "H NMR spectroscopic analysis; (¢) M, (caled)= (M x [LA]y/[M]o * (conv.(%)/100) + Mend groups (d) Determined by
GPC in chloroform at 30 °C against polystyrene standards (M, values are corrected by a factor of 0.58).”
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Table S4. rac-Lactide polymerisation using Pn*Zr(0O-2,6-Me-C¢H3), (2), Pn*Zr(0-2,6-"Pr-C¢H3), (3), Pn*ZrCl(0O-2,6-'Bu-4-Me-C¢H,) (6) and
Pn*ZrCp(O'Bu) (7).

Initiator [LA]¢/[M]y [LA]y Temp. Solvent Time*  Conversion® Kobs R? M, (caled)* M, (GPC)! M, /M4
o) (°O) (h) (Y0) (h™) (gmol™™) (g mol™)
3 50 0.5 80 benzene-d; 9 78 0.18+£0.01 0.992 5800 9930 1.57
6 50 0.5 80 benzene-ds 9 79 0.18+0.01 0.995 5914 6617 1.56
7 50 0.5 80 benzene-d; 30 87 0.04 £0.001 0.999 - - -
2 200 2.0 80 benzene-d; 21 98 0.21+0.02 0.977 28374 25275 1.23
3 200 2.0 80 benzene-ds 30 97 0.12+£0.01 0.994 28141 25509 1.14
5 200 2.0 80 benzene-dj 24 95 0.11+0.01 0.974 27607 26747 1.38
3 50 0.5 60 benzene-d; 10 76 0.15+0.01 0.972 5656 7999 1.27
3 50 0.5 70 benzene-ds 10 78 0.16 £0.01 0.995 5842 9800 1.51
3 25 0.5 80 benzene-ds 7 91 0.34+£0.03 0.972 3457 4337 1.86
3 10 0.5 80 benzene-d; 5 92 0.49+0.09 0.933 - - -
6 25 0.5 80 benzene-d; 7 90 0.34+0.03 0.980 3464 3673 1.28
6 10 0.5 80 benzene-ds 5 90 0.46 £0.08 0.942 - - -
3 200 2 80 chloroform-d, 20 93 0.13+0.01 0.984 26988 9930 1.57
3 200 2 80  tetrahydrofuran-dy 24 0 0 - - - -
5 200 2 80 chloroform-d,; 16 23 0.01 £0.001 0.984 6851 4337 1.86
6 200 2 80  tetrahydrofuran-ds 24 0 0 - - - -

(a) Time polymerisation quenched; (b) Measured by "H NMR spectroscopic analysis; (¢) M, (caled) = (M x [LA]y/[M]o % (conv.(%)/100) + Mend group; (d) Determined by
GPC in chloroform at 30 °C against polystyrene standards (M, values are corrected by a factor of 0.58).”
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Table S5. L-Lactide polymerisation using Pn*Zr(O-2,6-Me-C¢H;) (2) at 80°C with
[LA]¢/[M]o= 50 and [LA]o = 0.5 M in benzene-dg.

Time Conversion

(h) (%) [LAJo/[LA]¢
0 0 0
1 2 0.02
2 9 0.09
4 39 0.49
5 55 0.79
6 66 1.08
7 77 1.46
8 84 1.81
9 87 2.06

10.6 92 2.55

Table S6. L-Lactide polymerisation using Pn*Zr(O-2,6-Pr-C¢H;), (3) at 80°C with
[LA]o/[M]o =50 and [LA], = 0.5 M in benzene-d;.

Time Conversion

(h) (%) [LAJo/[LA]¢
0 0 0

1 27 0.31

2 53 0.75

3 66 1.07

5 81 1.68

6 88 2.12
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Table S7. L-Lactide polymerisation using Pn*ZrCp(O’Bu) (7) at 80 °C with [LA]y/[M], = 50
and [LA]op = 0.5 M in benzene-ds.

Time Conversion

(h) (%) [LAJo/[LA]¢
0 0 0
1 1 0.01
3 6 0.04
18.5 65 1.05
28.5 89 2.23
30 92 2.56

Table S8. L-Lactide polymerisation using Pn*ZrCp(O-2,6-Pr-C¢Hz) (9) at 80 °C with
[LA]¢/[M]o =50 and [LA]o = 0.5 M in benzene-dg.

Time Conversion

) ) [LAI/ILAI,
0 0 0
1 1 0.01
3 2 0.02
18.5 37 0.47
42 72 1.28
50 79 1.57
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Table S9. L-Lactide polymerisation using Pn*TiCp(O-2,6-Me-C¢Hs3) (10) at 80 °C with
[LA]¢/[M]o= 50 and [LA]o = 0.5 M in benzene-dg.

Time Conversion
(h) (%)
0.5 0

1 0
2 1
3 1
6 6
8 13
12 28
13 34
15 53
18 69
20 79
24 89
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Table S10. L-Lactide polymerisation using Pn*ZrCpMe¢(0O-2,6-Pr-C¢H3) (12) at 80 °C with
[LA]¢/[M]o= 50 and [LA]o = 0.5 M in benzene-dg.

Time Conversion

(h) (%) [LAJo/[LA]¢
0 0 0
16 4 0.04
32 12 0.12
54 26 0.30
77 42 0.54
100 60 0.91
164 85 1.92

Table S11. L-Lactide polymerisation using Pn*Zr(O-2,6-Me-C¢H3), (2) at 80°C with
[LA]¢/[M]o =200 and [LA]y = 2.0 M in benzene-ds.

Time Conversion

(h) (%) [LAJo/[LA]¢
0 0 0

3 11 0.12

5 34 0.42

7 64 1.02

9 84 1.82

14 97 3.51

21 98 3.76
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Table S12. L-Lactide polymerisation using Pn*Zr(O-2,6-Pr-C¢H3), (3) at 80°C with
[LA]¢/[M]o =200 and [LA]y = 2.0 M in benzene-ds.

Time Conversion

(h) (%) [LAJo/[LA]¢
0 0 0
1 25 0.29
2 44 0.58
5 70 1.20
7 91 2.37
9 95 2.97
18 95 2.99
21 96 3.31
24 97 3.63
28 98 3.79

Table S13. L-Lactide polymerisation using Pn*ZrCl(O-2,6-'Bu-4-Me-C¢H,) (6) at 80 °C with
[LA]o/[M]o=200 and [LA]o = 2.0 M in benzene-ds.

Time Conversion

(h) (%) [LA]o/[LA]¢
0 0 0
1 2 0.02
2 4 0.04
5 6 0.06
7 12 0.13
9 20 0.22
14 25 0.29
18 29 0.34
21 32 0.39
24 36 0.45
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Table S14. L-Lactide polymerisation using Pn*Zr(O-2,6-Pr-C¢H3), (3) at 60°C with
[LA]¢/[M]o= 50 and [LA]o = 0.5 M in benzene-dg.

Time Conversion

(h) (%) [LAJo/[LA]¢
0 0 0

1 11 0.12

2 30 0.35

3 44 0.59

5 64 1.02

6 74 1.33

Table S15. L-Lactide polymerisation using Pn*Zr(O-2,6-Pr-C¢H;), (3) at 70°C with
[LA]¢/[M]o =50 and [LA]o = 0.5 M in benzene-dg.

Time Conversion

) ) [LAI/ILAI,
0 0 0

1 14 0.16

2 31 0.37

3 46 0.62

5 73 1.32

6 83 1.78
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Table S16. L-Lactide polymerisation using Pn*Zr(O-2,6-Me-C¢Hs) (2) at 100 °C with
[LA]¢/[M]o= 50 and [LA]o = 0.5 M in benzene-dg.

Time Conversion

(h) (%) [LAJo/[LA]¢
0 0 0

1 2 0.02

2 16 0.16

4 83 0.83

5 92 0.92

6 94 0.94

Table S17. rac-Lactide polymerisation using Pn*Zr(O-2,6-Pr-C¢H;), (3) at 80°C with
[LA]¢/[M]o =50 and [LA]o = 0.5 M in benzene-dg.

Time Conversion

) ) [LAI/ILAI,
0 0 0

1 15 0.16

3 39 0.49

5 62 0.96

7 73 1.30

9 78 1.53
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Table S18. rac-Lactide polymerisation using Pn*ZrCl(O-2,6-'Bu-4-Me-C¢H,) (6) at 80 °C
with [LA]y/[M]o =50 and [LA]o = 0.5 M in benzene-ds.

Time Conversion

(h) (%) [LAJo/[LA]¢
0 0 0
1 14 0.15
3 45 0.59
5 59 0.90
7 73 1.31
9 79 1.55

Table S19. rac-Lactide polymerisation using Pn*ZrCp(O’Bu) (7) at 80 °C with [LA]y/[M]y =
50 and [LA]yp = 0.5 M in benzene-ds.

Time Conversion

(h) (%) [LAJo/[LA]¢
0 0 0
1 2 0.02

3 9 0.10

19 55 0.81

29 86 1.80

30 87 2.07
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Table S20. rac-Lactide polymerisation using Pn*TiCp(O-2,6-Me-C¢H3) (10) at 80 °C with
[LA]¢/[M]o= 50 and [LA]o = 0.5 M in benzene-dg.

Time Conversion
(h) (%)
0.5 0

1 0

2 1

3 3

6 11
8 20
12 25
13 29
15 41
18 55
20 65
24 79
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Table S21. rac-Lactide polymerisation using Pn*Zr(O-2,6-Me-C¢H;), (2) at 80 °C with
[LA]¢/[M]o =200 and [LA]y = 2.0 M in benzene-ds.

Time Conversion

(h) (%) [LAJo/[LA]¢
0 0 0

2 24 0.28

5 50 0.69

7 60 0.92

9 70 1.20

14 95 2.97

18 97 3.38

21 98 3.82

Table S22. rac-Lactide polymerisation using Pn*Zr(O-2,6-Pr-C¢Hsz), (3) at 80°C with
[LA]o/[M]o=200 and [LA]o = 2.0 M in benzene-ds.

Time Conversion

(h) (%) [LAJo/[LA]¢
0 0 0
1 24 0.28
2 30 0.35
5 46 0.62
7 58 0.86
9 70 1.22
14 84 1.81
18 90 2.32
21 93 2.73
24 96 3.14
30 97 3.55
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Table S23. rac-Lactide polymerisation using Pn*ZrCl(O-2,6-'Bu-4-Me-C¢H,) (6) at 80 °C
with [LA]¢/[M]p =200 and [LA]y = 2.0 M in benzene-ds.

Time Conversion

(h) (%) [LAJo/[LA]¢
0 0 0
1 14 0.15
2 25 0.28
5 36 0.44
7 45 0.60
9 58 0.86
14 75 1.39
18 88 2.12
21 94 2.81
24 95 3.00

Table S24. rac-Lactide polymerisation using Pn*Zr(O-2,6-Pr-C¢H;), (3) at 60 °C with
[LA]o/[M]o =50 and [LA], = 0.5 M in benzene-d;.

Time Conversion

(h) (%) [LAJo/[LA]¢
0 0 0
1 2 0.02
4 27 0.32
7 60 0.92
10 76 1.44
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Table S25. rac-Lactide polymerisation using Pn*Zr(O-2,6-Pr-C¢Hsz), (3) at 70 °C with
[LA]¢/[M]o= 50 and [LA]o = 0.5 M in benzene-dg.

Time Conversion

(h) (%) [LAJo/[LA]¢
0 0 0

1 5 0.05

4 42 0.55

7 67 1.11

10 78 1.53

Table S26. rac-Lactide polymerisation using Pn*Zr(O-2,6-Pr-C¢H;), (3) at 80 °C with
[LA]¢/[M]o =25 and [LA]o = 0.5 M in benzene-dg.

Time Conversion

) ) [LAI/ILAI,
0 0 0

1 46 0.62

3 74 1.35

5 87 2.04

7 91 2.41

Table S27. rac-Lactide polymerisation using Pn*Zr(O-2,6-Pr-C¢H;), (3) at 80°C with
[LA]o/[M]p=10 and [LA]y = 0.5 M in benzene-ds.

Time Conversion

0 0 0

1 63 0.99
3 87 2.04
5 92 2.53
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Table S28. rac-Lactide polymerisation using Pn*Zr(O-2,6-Pr-C¢Hsz), (3) at 80 °C with
[LA]¢/[M]o= 50 and [LA]o = 0.5 M in benzene-dg.

Time Conversion

(h) (%) [LAJo/[LA]¢
0 0 0

1 15 0.16

3 39 0.49

5 62 0.96

7 73 1.30

9 78 1.53

Table S29. rac-Lactide polymerisation using Pn*ZrCl(O-2,6-'Bu-4-Me-C¢H,) (6) at 80 °C
with [LA]o/[M]o =25 and [LA]o = 0.5 M in benzene-dg.

Time Conversion

(h) (%) [LAJo/[LA]¢
0 0 0

1 32 0.39

3 72 1.27

5 85 1.90

7 90 2.30
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Table S30. rac-Lactide polymerisation using Pn*ZrCl(O-2,6-'Bu-4-Me-C¢H,) (6) at 80 °C
with [LA]¢/[M]o = 10 and [LA], = 0.5 M in benzene-dj.

Time Conversion

0 0 0

1 54 0.78
3 85 1.90
5 90 2.30

Table S31. rac-Lactide polymerisation using Pn*Zr(O-2,6-Pr-C¢H;), (3) at 80°C with
[LA]o/[M]o=200 and [LA]o = 2.0 M in chloroform-d,.

Time Conversion

(h) (%) [LA]o/[LA]¢
0 0 0
1 2 0.02
4 41 0.52
9 60 0.92
16 84 1.82
20 93 2.61
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Table S32. rac-Lactide polymerisation using Pn*ZrCl(O-2,6-'Bu-4-Me-C¢H,) (6) at 80 °C
with [LA]o/[M]o =200 and [LA]o = 2.0 M in chloroform-d,.

T(illll)le Con(\;z;sion [LAJJ/[LA],
0 0 0
1 0 0
4 8 0.09
9 13 0.14
12 17 0.19
16 23 0.26
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4.3 Homonuclear decoupled 'H NMR spectra
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Fig. S35. 'H{'H} NMR spectrum (chloroform-d;, 500 MHz, 298 K) of the poly-L-lactide
produced using Pn*Zr(O-2,6-Me-C¢Hsz), (2). Polymerisation conditions: 80 °C,
[LA]o/[M]o =200, [LA]y=2.0 M and benzene-ds.
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Fig. S36. 'H{'H} NMR spectrum (chloroform-d;, 500 MHz, 298 K) of the poly-L-lactide
produced wusing Pn*Zr(0-2,6-Pr-C¢H;); (3). Polymerisation conditions: 80 °C,
[LA]o/[M]p =200, [LA]p=2.0 M and benzene-d;.
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Fig. S37. 'H{'H} NMR spectrum (chloroform-d;, 500 MHz, 298 K) of the poly-L-lactide
produced using Pn*ZrCl(O-2,6-'Bu-4-Me-C¢H;) (6). Polymerisation conditions: 80 °C,
[LA]o/[M]y =200, [LA]y = 2.0 M and benzene-dg.
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Fig. S38. 'H{'H} NMR spectrum (chloroform-d;, 500 MHz, 298 K) of the poly-rac-lactide
produced using Pn*Zr(0O-2,6-Me-C¢H3), (2) (P, = 0.66 £ 0.03). Polymerisation conditions:
80 °C, [LA]¢/[M]o =200, [LA]o =2.0 M and benzene-dj.

Tetrad Probability P, (deconvolution)
rmr P22 0.61
mmm P2+ (P.Py)2 0.68
mrm (P2 + P.Py)2 0.68
Average P, 0.66 +0.03
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Fig. S39. 'H{'H} NMR spectrum (chloroform-d;, 500 MHz, 298 K) of the poly-rac-lactide
produced using Pn*Zr(0O-2,6-Me-C¢H3), (3) (P, = 0.54 £ 0.02). Polymerisation conditions:
80 °C, [LA]¢/[M], = 200, [LA]y=2.0 M and benzene-ds.

Tetrad Probability P, (deconvolution)
rmr P22 0.53
mmm P2+ (PPy)2 0.53
mrm (P2 + P.Py)2 0.57
Average P, 0.54+0.02
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Fig. S40. '"H{'H} NMR spectrum (chloroform-d;, 500 MHz, 298 K) of the poly-rac-lactide
produced using Pn*ZrCl(O-2,6-'Bu-4-Me-C¢H,) (6) (P, = 0.68 + 0.03). Polymerisation
conditions: 80 °C, [LA]y/[M]o =200, [LA]y = 2.0 M and benzene-dj.

Tetrad Probability P, (deconvolution)
rmr P22 0.64
mmm P2+ (PPy)2 0.68
mrm (P2 + P.Py)2 0.71
Average P, 0.68 +£0.03
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4.4 MALDI-TOF mass spectra
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Fig. S41. MALDI-TOF mass spectrum (recorded in a DCTB + KTFA matrix) of the
poly-rac-lactide synthesised using Pn*Zr(O-2,6-Pr-C4H3), (3). Polymerisation conditions:
80 °C, [LA]¢/[M]o = 10, [LA]o = 0.5 M and benzene-d;.
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Fig. S42. MALDI-TOF mass spectrum (recorded in a DCTB + KTFA matrix) of the
poly-rac-lactide synthesised using Pn*ZrCl(O-2,6-‘Bu-4-Me-C¢H;,) (6). Polymerisation

conditions: 80 °C, [LA]¢/[M]o = 10, [LA]y = 0.5 M and benzene-ds.
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