Supplementary Materials

Amalgamation of MnWO₄ nanorods with amorphous carbon nanotubes for highly stabilized energy efficient supercapacitor electrode

Kausik Sardar¹, Subhasish Thakur¹, Soumen Maiti², Nripen Besra³, Partha Bairi³, Kausik Chanda³, Gautam Majumdar⁴, Kalyan Kumar Chattopadhyay^{1,3 *}

¹School of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700032, India

²St Thomas College of Engineering & Technology, Kolkata 700023, India
 ³Department of Physics, Jadavpur University, Kolkata 700032, India
 ⁴Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, India
 *Corresponding author E-mail: kalyan chattopadhyay@yahoo.com

Electrode prepartaion

The working electrodes were prepared using of $MnWO_4$ -aCNT, polytetrafluoroethylene (PVDF) and carbon black with a ratio of 8:1:1. The aforesaid reagents were mixed with 300 µL NMP and stirred for 6 hours to obtain a black paste. This mixture was coated on precleaned and dry Ni Foam and dried at 70 °C for 12 hours.

Characterizations

X-ray diffraction study was performed using X-ray diffractometer (Bruker D8: Advance). Morphology of the products was examined by field emission scanning electron microscope (FESEM, Hitachi S-4800). EDS study was performed using energy dispersive spectroscopy (EDS, Thermo Scientific attached with the FESEM). To get more details about morphology and crystal structure transmission electron microscope (JEOL, JEM 2100) study was further performed. Raman spectra were recorded using Raman spectrometer (alpha 300, Witec). BET measurements were carried out using Nova 1000e, Quantachrome. Electrochemical tests were studied in Gamry Interface 1000 (potentiostat/galvanostat/ZRA).

Electrolyte gel preparation for ASC device

For the preparation of electrolyte gel, PVA, KOH and DI water was used. A mixture of PVA, KOH and DI water was stirred vigorously. Mixture temperature was maintained at 90 °C and the solution was stirred until the solution became transparent and homogeneous. After the gel formation, it was cooled to room temperature which eliminated the as formed excess bubbles.

Sample	Scan rate (mVs ⁻¹)	Specific capacitance (Fg ⁻¹)
	5	113.86
	10	76.34
CNT	20	52.18
acivi	50	31.27
	75	24.31
	100	20.35
MnWO4	2	231.15
	5	196.13
	10	166.58
	20	139.72
	50	102.38
	75	85.43
	100	73.88
MnWO ₄ -aCNT	2	542.18
	5	388.81
	10	298.95
	20	233.88
	50	157.94
	75	130.04
	100	112.52

Table S1:

Component	Value		
Component	MnWO ₄ -aCNT	MnWO ₄	
R ₁ (ohm)	0.3265	0.9711	
R ₂ (ohm)	1.434	2.033	
R ₃ (ohm)	0.5731	0.7835	
W ₁ (ohm S ^{-1/2})	11.13	28.7	
W ₂ (ohm S ^{-1/2})	0.7003	0.9812	
C ₁ (F)	0.162×10 ⁻³	0.6021×10 ⁻²⁴	
C ₂ (F)	8.366×10-3	2.479×10 ⁻³	
C ₃ (F)	3.039	1.121	

Table S2: Values of equivalent circuit components.

Electrode material	Electrolyte	Specific capacitance	Potential window	Energy density	Cycling stability	Ref.
SWCNT	KOH + p- phenylenediamin e	162.66 Fg ⁻¹ at 1 Ag ⁻¹	-0.8 to 0.2 V	4.23 W h kg ⁻¹	96.51% after 4000 cycles	1
MWCNTs	KOH + m- phenylenediamin e	78 Fg ⁻¹ at 0.5 Ag ⁻¹	-0.5 to 0.5 V	9.99 W h kg ⁻¹	90.68% after 10000 cycles	2
MWCNTs	H ₂ SO ₄ + indigo carmine	50 Fg ⁻¹ at 0.88 mA cm ⁻²	0 to 1 V	1.7 W h kg ⁻	30% after 10000 cycles	3
NGPC15	КОН	227.9 Fg ⁻¹ at 2 mV s ⁻¹	-1 to 0 V	-	106% after 5000 cycles	4
Boron- doped carbon	H_2SO_4	228 Fg ⁻¹ at 1 mV s ⁻¹	0 to 1 V	8.65 W h kg ⁻¹	100% after 1000 cycles	5
Carbon nanotube	КОН	180 Fg ⁻¹	0 to 0.9 V	6.5 W h kg ⁻	-	6
N ₂ -doped carbon nanofibers	КОН	202 Fg ⁻¹ at 1 Ag ⁻¹	-1 to 0 V	7.11 W h kg ⁻¹	97% after 3000 cycles	7
Mesoporo us carbon	КОН	128 Fg ⁻¹ at 50 mA g ⁻¹	0.2 to 1 V	1.16 W h kg ⁻¹	-	8
Mesoporo us fullerene	КОН	172 Fg ⁻¹ at 0.5 Ag ⁻¹	-1 to 0 V	-	Significant drop after 1000 cycles	9
TiO ₂ anchored to CNT	КОН	130.4 Fg ⁻¹ at 1 Ag ⁻¹	-0.05 to 0.5 V	4.47 W h kg ⁻¹		10
MnWO ₄ /R GO	КОН	288 Fg ⁻¹ at 5 mV s ⁻¹	-0.35 to 0.55 V	-	14.9% after 6000 cycles	11
MnWO ₄	Na_2SO_4	386 Fg ⁻¹ at 5 mVs ⁻¹	0 to 1 V	-	90% after 2000 cycles	12
MnWO ₄	КОН	295 Fg ⁻¹ at 5 mVs ⁻¹	-0.2 to 0.6 V	16 Wh kg ⁻¹	> 100% after 3000 cycles	13
WO ₃ -RGO composite	H_2SO_4	495 Fg ⁻¹ at 1 Ag ⁻¹	-0.4 to 0.3 V	-	87.5% after 1000 cycles	14
MnWO ₄ micro flower	Na ₂ SO ₄	324 Fg ⁻¹ at 1 mA cm ⁻²	0 to 1 V	34 W h kg ⁻¹	93% after 8000	15
MnWO ₄ @ aCNT	КОН	542.18 Fg ⁻¹ at 2 mVs ⁻¹	-0.1 to 0.6 V	5.6 W h kg ⁻¹	Above 100% after 15,000 cycles	This work

Table S3: Electrochemical performance comparison:

Figure S1: Schematic of synthesis protocol of aCNT.

Figure S2: Schematic of synthesis protocol of MnWO₄-aCNT hybrid.

Figure S3: (a) XRD and (b) RAMAN spectra of aCNT.

Figure S4: EDS spectrum and associated elemental mapping of MnWO₄-aCNT.

Figure S5: XPS survey scan of MnWO₄-aCNT.

Figure S6: (a) N₂ adsorption-desorption isotherms and (b) pore distributions of MnWO₄-aCNT and

MnWO₄.

Figure S7: CV curves of (a) aCNT at 5mVs⁻¹; (b) aCNT and (b) MnWO₄ at different scan rates.

Figure S8: GCD curves of (a) aCNT at 1 Ag⁻¹; (b) aCNT and (c) MnWO₄ at different current density.

Figure S9: Equivalent circuit which is used to fit the EIS spectra.

Figure S10: Active power and reactive power of (a) MnWO₄-aCNT and (b) MnWO₄.

Figure S11: FESEM image of the hybrid before and after 15000 cycles.

Figure S12: Mott Schottky plot of the (a) MnWO₄-aCNT and (b) MnWO₄.

Figure S13: Variation in C_s of ASC with respect to (a) scan rate (b) current density.

Figure S14: FESEM image of the nickel foam (a) before and (b) after 6000 cycles operation.

Figure S15: (a) ASC Device arrangement in series and series/parallel; (b) single ASC Device and (c) digital photographs of running motor fan.

Reference:

- 1. H. Yu, J. Wu, J. Lin, L. Fan, M. Huang, Y. Lin, Y. Li, F. Yu, and Z. Qiu, *ChemPhysChem*, 2013, 14, 394-399.
- 2. H. Yu, L. Fan, J. Wu, Y. Lin, M. Huang, J. Lin, and Z. Lan, RSC Adv., 2012, 2, 6736-6740.
- 3. S. Roldán, Z. González, C. Blanco, M. Granda, R. Menéndez, and R. Santamaría, *Electrochim. Acta*, 2011, **56**, 3401-3405.
- P. Bairi, K. Sardar, K. Chanda, M. Samanta, S. Thakur, K. Panigrahi, S. Sarkar, T. Paul, and K. K. Chattopadhyay, *ACS Appl. Energy Mater.*, 2020, 3, 5984-5992.
- Z. S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. Feng, and K. Müllen, *Adv. Mater.*, 2012, 24, 5130-5135.
- K. H. An, W. S. Kim, Y. S. Park, Y. C. Choi, S. M. Lee, D. C. Chung, D. J. Bae, S. C. Lim, and Y. H. Lee, *Adv. Mater.*, 2001, 13, 497-500.
- L. F. Chen, X. D. Zhang, H. W. Liang, M. Kong, Q. F. Guan, P. Chen, Z. Y. Wu, and S. H. Yu, ACS nano, 2012, 6, 7092-7102.
- 8. S. R. S. Prabaharan, R. Vimala, and Z. Zainal, J. Power Sources., 2006, 161, 730-736.
- M. R. Benzigar, S. Joseph, A. V. Baskar, D. H. Park, G. Chandra, S. Umapathy, S. N. Talapaneni, and A. Vinu, *Adv. Funct. Mater.*, 2018, 28, 1803701.

- 10. X. Sun, M. Xie, J. J. Travis, G. Wang, H. Sun, J. Lian, and S. M. George, J. Phys. Chem. C, 2013, 117, 22497-22508.
- 11. J. Tang, J. Shen, N. Li, and M. Ye, J. Alloys Compd., 2016, 666, 15-22.
- 12. J. Yesuraj, E. Elanthamilan, B. Muthuraaman, S. A. Suthanthiraraj, and J. P. Merlin, J. *Electron. Mater.*, 2019, **48**, 7239-7249.
- 13. F. Li, X. Xu, J. Huo, and W. Wang, Mater. Chem. Phys., 2015, 167, 22-27.
- 14. J. Chu, D. Lu, X. Wang, X. Wang, and S. Xiong, J. Alloys Compd., 2017, 702, 568-572.
- 15. B. G. S. Raj, J. Acharya, M. K. Seo, M. S. Khil, H. Y. Kim, and B. S. Kim, *Int. J. Hydrog. Energy*, 2019, 44, 10838-10851.