Electronic Supporting Information (ESI[†])

Ni, Pd, and Pt Complexes of a Tetradentate Dianionic Thiosemicarbazone-Based O^N^NS Ligand

Alexander Haseloer, Luca Mareen Denkler, Rose Jordan, Max Reimer, Selina Olthoff, Ines Schmidt, Klaus Meerholz, Gerald Hörner* and Axel Klein*

Contents

Supporting Figures Fig. S1 400 MHz ¹H NMR spectra of HL and starting materials in CDCl₃. Fig. S2 EI-MS(+) of H₂L. Fig. S3 HR-ESI-MS(+) of H₂^{tBu}L. Fig. S4 400 MHz ¹H NMR spectra of [Ni(L)], [Pd(L)], and [Pt(L)] in DMSO-d₆. Fig. S5 400 MHz ¹H NMR spectra of [Ni(L)], [Pd(L)], and [Pt(L)] in CDCl₃. Fig. S6 300 MHz ¹H NMR spectra of [Ni(t^{Bu}L)], [Pd(t^{Bu}L)], and [Pt(t^{Bu}L)] in CDCl₃. Fig. S7 HR-ESI-MS(+) of [Ni(L)]. Fig. S8 Part of HR-ESI-MS(+) of [Ni(L)] showing [M+H]⁺ and [M+Na]⁺. Fig. S9 EI-MS(+) of [Pd(L)]. Fig. S10 Part of EI-MS(+) of [Pd(L)]. Fig. S11 EI-MS(+) molecular peak of [Pd(L)] and calculated isotopic pattern. Fig. S12 EI-MS(+) of [Pt(L)]. Fig. S13 EI-MS(+) molecular peaks of [Pt(L)] and calculated isotopic pattern. Fig. S14 EI-MS(+) of [Ni(^{tBu}L)]. Fig. S15 EI-MS(+) molecular peaks of [Ni(tBuL)] and calculated isotopic pattern. Fig. S16 EI-MS(+) of [Pd(tBuL)]. Fig. S17 EI-MS(+) molecular peaks of [Pd(tBuL)] and calculated isotopic pattern. Fig. S18 EI-MS(+) of [Pt(tBuL)]. Fig. S19 EI-MS(+) molecular peak of [Pt(tBuL)] and calculated isotopic pattern. Fig. S20 IR spectra of [Ni(L)], [Pd(L)], and [Pt(L)]. Fig. S21 IR spectra of [Ni(^{tBu}L)], [Pd(^{tBu}L)], and [Pt(^{tBu}L)]. Fig. S22 Optimised structures and selected bond lengths of the complexes [M(L)] with M = Ni, Pd, and Pt. Fig. S23 Optimised structures and selected bond lengths of the protoligands H_2L and $H_2^{tBu}L$. Fig. S24 UV-vis absorption spectra of $H_2^{tBu}L$ and the complexes [M(^{tBu}L)] (M = Pt, Pd, and Ni. Fig. S25 TD-DFT calculated optical spectrum of [Pd(L)]; verticals: transitions. Fig. S26 TD-DFT calculated optical spectrum of [Pt(L)]; verticals: transitions. Fig. S27 TD-DFT calculated optical spectrum of [Ni(^{tBu}L)]; verticals: transitions. Fig. S28 TD-DFT calculated optical spectrum of [Pd(^{tBu}L)]; verticals: transitions. Fig. S29 TD-DFT calculated optical spectrum of [Pt(^{tBu}L)]; verticals: transitions. Fig S30 Cyclic voltammograms of H₂L and [Ni(L)] in 0.1 M nBu₄NPF₆ MeCN solution. Fig. S31 Cyclic voltammogramms of [Pd(L)] and [Pt(L)] in 0.1 M *n*-Bu₄NPF₆ MeCN solution. Fig. S32 Cyclic voltammogramms of H₂^{tBu}L and [Ni(^{tBu}L)] in 0.1 M *n*-Bu₄NPF₆ MeCN solution. Fig. S33 Cyclic voltammogramms of [Pd(^{tBu}L)] and [Pt(^{tBu}L)] in 0.1 M *n*-Bu₄NPF₆ MeCN solution. Fig. S34 UV-vis absorption spectra recorded during electrolysis of HL in 0.1 M *n*-Bu₄NPF₆ MeCN solution. **Fig. S35** UV-vis absorption spectra recorded during electrolysis of **[Ni(L)]** in 0.1 M *n*-Bu₄NPF₆ MeCN. Fig. S36 UV-vis absorption spectra recorded during electrolysis of [Pd(L)] in 0.1 M *n*-Bu₄NPF MeCN. Fig. S37 UV-vis absorption spectra recorded during electrolysis of [Pt(L)] in 0.1 M n-Bu₄NPF₆ MeCN. Fig. S38 UV-vis absorption spectra recorded during electrolysis of H₂^{tBu}L in 0.1 M *n*-Bu₄NPF₆ MeCN. Fig. S39 UV-vis absorption spectra recorded during electrolysis of [Ni(^{HBu}L)] in 0.1 M n-Bu₄NPF₆ MeCN. Fig. S40 UV-vis absorption spectra recorded during electrolysis of [Pd(^{tBu}L)] in 0.1 M *n*-Bu₄NPF₆ MeCN. Fig. S41 UV-vis absorption spectra recorded during electrolysis of [Pt(^{tBu}L)] in 0.1 M *n*-Bu₄NPF₆ MeCN. **Supporting Tables** Table S1 Selected DFT calculated structural parameters of the reference Ni(II) complexes B and F; data in parentheses from single-crystal X-ray crystallography.

Table S2 Computed metrics of the complexes [M(^{tBu}L)] (M = Ni, Pd, Pt) and the reference complex F.

Table S3 Selected DFT calculated structural parameters of [M(L)] and [M(^{tBu}L)] (M = Ni, Pd or Pt).

Table S4 Absorption maxima of the protoligands H_2L and $H_2^{tBu}L$ and the complexes [M(L)] and [M(t^{Bu}L)] (M = Ni, Pd, Pt)

Table S5 (six tables) TD-DFT calculated absorptions of [M(L)] and [M^{tBu}L)] M = Ni, Pd, Pt.

Table S6 Selected electrochemical data of the protoligands H_2L and $H_2^{tBu}L$ and the complexes [M(L)] and [M(^{tBu}L)] (M = Ni, Pd, Pt).

Supporting Figures:

Fig. S1 400 MHz ¹H NMR spectra of **HL** and starting materials in CDCl₃. The imine proton is marked in orange, the amine proton is marked in green and the proton at the chiral carbon atom is marked in blue.

Fig. S3 HR-ESI-MS(+) of $H_2^{tBu}L$.

Fig. S4 400 MHz ¹H NMR spectra of [Ni(L)] (red), [Pd(L)] (green) and [Pt(L)] (blue) in DMSO-d₆.

Fig. S5 400 MHz ¹H NMR spectra of [Ni(L)] (blue), [Pd(L)] (green), and [Pt(L)] (red) in CDCl₃.

Fig. S6 300 MHz ¹H NMR spectra of [Ni(^{tBu}L)], [Pd(^{tBu}L)], and [Pt(^{tBu}L)] in CDCl₃.

Fig. S7 HR-ESI-MS(+) of [Ni(L)].

Fig. S8 Part of HR-ESI-MS(+) of [Ni(L)] showing [M+H]⁺ (433 m/z) and [M+Na]⁺ (455 m/z).

Fig. S9 EI-MS(+) of [Pd(L)].

Fig. S10 Part of EI-MS(+) of **[Pd(L)]**.

Fig. S11 EI-MS(+) molecular peak of **[Pd(L)]** (top) representing $[M]^+$ (480 m/z) and $[M-CH_3]^+$ (465 m/z) and calculated isotopic pattern for $[M]^+$ (bottom).

Fig. S12 EI-MS(+) of [Pt(L)].

Fig. S13 EI-MS(+) molecular peaks of **[Pt(L)]** (top) representing [M]⁺ at 569 m/z and calculated isotopic pattern (bottom).

Fig. S15 EI-MS(+) molecular peaks of $[Ni(^{tBu}L)]$ (top), representing $[M]^+$ (544 m/z) and $[M-CH_3]^+$ (529 m/z) and calculated isotopic pattern of $[M]^+$ (bottom).

Fig. S16 EI-MS(+) of [Pd(^{tBu}L)].

Fig. S17 EI-MS(+) molecular peaks of **[Pd(^{tBuL})]** (top) representing [M]⁺ (592 m/z) and [M-CH₃]⁺ (577 m/z) and calculated isotopic pattern of [M-CH₃]⁺.

Fig. S18 EI-MS(+) of [Pt(^{tBu}L)].

Fig. S19 EI-MS(+) molecular peak of **[Pt(^{\text{tBu}}L)]** representing [M]⁺ (544 m/z) and [M-CH₃]⁺ (529 m/z) and calculated isotopic pattern for [M-CH₃]⁺ (bottom).

Fig. S20 IR spectra of [Ni(L)] (red), [Pd(L)] (blue), and [Pt(L)] (black).

Fig. S21 IR spectra of [Ni(^{tBu}L)] (red), [Pd(^{tBu}L)] (blue), and [Pt(^{tBu}L)] (black).

Fig. S22 Optimised structures and selected bond lengths of the complexes [**M**(**L**)] with M = Ni (a), Pd (b) and Pt (c).

Fig. S23 Optimised structures and selected bond lengths of the protoligands H_2L (a) and $H_2^{tBu}L$ (b).

Fig. S24 UV-vis absorption spectra of $H_2^{tBu}L$ and the complexes $[M(^{tBu}L)]$ (M = Pt (red trace), Pd (orange) and Ni (brown).

Fig. S25 TD-DFT calculated optical spectrum of [Pd(L)]; verticals: transitions. Inset: Difference densities of selected transitions.

Fig. S26 TD-DFT calculated optical spectrum of [Pt(L)]; verticals: transitions. Inset: Difference densities of selected transitions.

Fig. S27 TD-DFT calculated optical spectrum of [Ni(^{iBu}L)]; verticals: transitions. Inset: Difference densities of selected transitions.

Fig. S28 TD-DFT calculated optical spectrum of [Pd('^{Bu}L)]; verticals: transitions. Inset: Difference densities of selected transitions.

Fig. S29 TD-DFT calculated optical spectrum of [Pt(^{tBu}L)]; verticals: transitions. Inset: Difference densities of selected transitions.

Fig S30 Cyclic voltammograms of H_2L (left) and [Ni(L)] (right) in 0.1 M nBu_4NPF_6 MeCN solution.

Fig. S31 Cyclic voltammogramms of [Pd(L)] (left) and [Pt(L)] (right) in 0.1 M *n*-Bu₄NPF₆ MeCN solution.

Fig. S32 Cyclic voltammogramms of $H_2^{tBu}L$ (left) and [Ni(^{tBu}L)] (right) in 0.1 M *n*-Bu₄NPF₆ MeCN solution.

Fig. S33 Cyclic voltammogramms of **[Pd(**^{tBu}**L)]** (left) and **[Pt(**^{tBu}**L)]** (right) in 0.1 M *n*-Bu₄NPF₆ MeCN solution.

Fig. S34 UV-vis absorption spectra recorded during electrolysis of **HL** in 0.1 M n-Bu₄NPF₆ MeCN solution; left: oxidation; right: reductions.

Fig. S35 UV-vis absorption spectra recorded during electrolysis of **[Ni(L)]** in 0.1 M *n*-Bu₄NPF₆ MeCN solution; left: oxidation; right: reductions.

Fig. S36 UV-vis absorption spectra recorded during electrolysis of **[Pd(L)]** in 0.1 M *n*-Bu₄NPF₆ MeCN solution; left: oxidation; right: reductions.

Fig. S37 UV-vis absorption spectra recorded during electrolysis of **[Pt(L)]** in 0.1 M *n*-Bu₄NPF₆ MeCN solution; left: oxidation; right: reductions.

Fig. S38 UV-vis absorption spectra recorded during electrolysis of $H_2^{tBu}L$ in 0.1 M *n*-Bu₄NPF₆ MeCN solution; left: oxidation; right: reductions.

Fig. S39 UV-vis absorption spectra recorded during electrolysis of $[Ni(^{tBu}L)]$ in 0.1 M *n*-Bu₄NPF₆ MeCN solution; left: oxidation; right: reductions.

Fig. S40 UV-vis absorption spectra recorded during electrolysis of $[Pd(^{tBu}L)]$ in 0.1 M *n*-Bu₄NPF₆ MeCN solution; left: oxidation; right: reductions.

Fig. S41 UV-vis absorption spectra recorded during electrolysis of **[Pt(tBuL)]** in 0.1 M *n*-Bu₄NPF₆ MeCN solution; left: oxidation; right: reductions.

Supporting Tables:

Table S1 Selected DFT calculated structural parameters ^a of the reference Ni(II) complexes **B** and **F**; data in parentheses from single-crystal X-ray crystallography.

	Complex B ^b		Complex F ^c
distances / Å		distances / Å	
Ni–S	2.177	Ni–S	2.194
	(2.170(4) / 2.165(5))		(2.175(1) / 2.160(2))
Ni–S'	2.180	Ni-O	1.844
	(2.167(4) / 2.170(5))		(1.835(2) / 1.833(2))
Ni–N1	1.868	Ni–N1	1.859
	(1.80(1) / 1.82(1))		(1.853(3) / 1.847(3))
Ni–N2	1.861	Ni–N2	1.839
	(1.85(1) / 1.84(1))		(1.852(3) / 1.844(3))
C–S	1.795	C–S	1.777
C–S′	1.795	C-O	1.314
C–C	1.452	C–C	1.499
angles / °		angles / °	
trans-S'–Ni–N1	171.3	trans-S–Ni–N1	172.4
trans-S–Ni–N2	170.9	trans-O–Ni–N2	177.9
cis-S–Ni–S′	101.4	cis-S–Ni–O	91.4
cis-N–Ni–S	87.7/87.4	cis-N–Ni–S	96.1
		N-C-C-C(O)	1.5
		N-C-C-N	9.0

^a Optimised at the BP86-D3/TZVP/COSMO(THF) level of theory. ^b from ref. [1]. c from ref. [2]. Both complexes contain two independent molecules in the unit cell of the crystal structure.

references:

[1] T. Straistari, J. Fize, S. Shova, M. Réglier, V. Artero and M. Orio, ChemCatChem 2017, 9, 2262–2268.

[2] A. Kochem, G. Gellon, O. Jarjayes, C. Philouze, A. du Moulinet d'Hardemare, M. van Gastel and F. Thomas, *Dalton Trans.*, 2015, 44, 12743–12756.

Table S2 Computed metrics of the complexes $[M(^{tBu}L)]$ (M = Ni, Pd, Pt) and the reference complex $F_{;a}^{a}$

	F ^{b,c}	[Ni(^{tBu} L)	[Pd(^{tBu} L)	[Pt(^{tBu} L)]
]]	
distances / Å				
Ni–S	2.194	2.203	2.366	2.318
	(2.175(1))			
Ni–O	1.844	1.818	2.018	1.981
	(1.835(2))			
Ni–N1	1.859	1.849	2.004	1.951
	(1.853(3))			
Ni–N2	1.839	1.875	2.034	2.002
	(1.852(3))			
C–S	1.777	1.774	1.785	1.790
С-О	1.314	1.321	1.321	1.329
C–C	1.499	1.434	1.446	1.439
angles / °				
trans-S–Ni–N	172.4	172.1	165.3	167.4
trans-N–Ni–O	177.9	177.1	173.8	176.6
cis-S–Ni–O	91.4	92.1	101.9	98.4
cis-N–Ni–O	96.1	95.7	92.7	94.2
N-C-C-C(O)	1.5	13.3	20.3	14.1
N-C-C-N	9.0	3.1	5.5	3.1

^a DFT-optimised with BP86-D3/TZVP. ^b For the structure of complex **F** see Scheme 2. ^c Data in parentheses denote experimental metrics reported in ref. 34.

	[Ni(L)]	[Pd(L)]	[Pt(L)]	[Ni(^{tBu} L)]	$[Pd(^{tBu}L)]$	[Pt(^{tBu} L)]
distances / Å						
Ni–S	2.200	2.364	2.317	2.203	2.366	2.318
Ni-O	1.822	2.022	1.988	1.818	2.018	1.981
Ni-N1	1.849	2.001	1.951	1.849	2.004	1.951
Ni–N2	1.882	2.038	2.008	1.875	2.034	2.002
C–S	1.772	1.784	1.789	1.774	1.785	1.790
С-О	1.321	1.321	1.330	1.321	1.321	1.329
C–C	1.465	1.472	1.472	1.434	1.446	1.439
angles / °						
trans-S2–Ni–N1	172.1	165.3	167.3	172.1	165.3	167.4
trans-O–Ni–N2	177.7	175.2	177.2	177.1	173.8	176.6
cis-S–Ni–O	91.4	101.1	97.9	92.1	101.9	98.4
cis-N–Ni–O	96.5	93.7	94.7	95.7	92.7	94.2
N-C-C-C(O)	0.6	16.0	10.5	13.3	20.3	14.1
N-C-C-N	0.1	3.6	2.1	3.1	5.5	3.1

^a Optimised at the BP86-D3/TZVP/COSMO(THF) level of theory.

Table S4 Absorption maxima of the protoligands H_2L and $H_2t^{Bu}L$ and the complexes [M(L)] and [M($t^{Bu}L$)] (M = Ni, Pd, Pt) ^a

	λ_1		λ_2		λ_3			λ_4
H ₂ L	249	274	327					
[Ni(L)]	233	261	337	394	413	450	488	560
[Pd(L)]	229	254	316	360	372	441		497
[Pt(L)]	236	254	333	384	405	444	505	547
H ₂ tBuL	248	279	331					
[Ni(^{tBu} L)]	239	267	339		387	420	491	577
[Pd(tBuL)]	231	261	316	366	379	455		518
[Pt(^{tBu} L)]	239	258	335	385	408	468	524	567

^a Measured in MeCN.

transition	v / cm ⁻¹	λ / nm	f _{osc}	character
6	14212.5	703.6	0.021	$H \rightarrow L (88 \%)$
11	17523.5	570.7	0.019	$H-1 \rightarrow L (75 \%)$
18	23014.8	434.5	0.069	Mixed
20	23935.8	417.8	0.033	Mixed
25	25486	392.4	0.033	Mixed
27	24897.4	401.6	0.035	H–6 \rightarrow L (30 %) // H–4 \rightarrow L (40 %)
28	26039	384	0.023	H–6 \rightarrow L (32 %) // H–4 \rightarrow L (25 %)
32	27325.9	366	0.029	$H-5 \rightarrow L (43 \%)$
35	27696.6	361.1	0.285	Mixed
38	28573.8	350	0.015	Mixed
43	29938.8	334	0.026	$H-5 \rightarrow L+1 (43 \%)$
45	24023.9	416.3	0.010	$H-8 \rightarrow L (84 \%)$
47	30390.3	329.1	0.246	Mixed
57	31098.6	321.6	0.023	$H-4 \rightarrow L+2 (80 \%)$
62	33273.7	300.5	0.020	$H \rightarrow L+5 (85 \%)$
66	34785.7	287.5	0.019	$H-10 \rightarrow L+1 (34 \%) // H-5 \rightarrow L+2 (30 \%)$
68	33507	298.4	0.035	H–11 \rightarrow L (42 %) // H–7 \rightarrow L+1 (47 %)
69	33977	294.3	0.014	H–11 \rightarrow L (46 %) // H–7 \rightarrow L+1 (36 %)

Table S5.1 TD-DFT calculated absorptions of $[Ni(^{tBu}L)]$ with $f_{osc} > 0.01$; character denotes leading orbital contributions.

Table S5.2 TD-DFT calculated absorptions of $[Pd(^{tBu}L)]$ with $f_{osc} > 0.01$; character denotes leading orbital contributions.

transition	ν / cm ⁻¹	λ / nm	f _{osc}	character
3	12886.3	776	0.019	$H \rightarrow L (97 \%)$
5	17018	587.6	0.010	$H \rightarrow L+1 (95 \%)$
9	18914.3	528.7	0.017	$H-1 \rightarrow L (74 \%)$
15	22833.7	437.9	0.051	$H-2 \rightarrow L (28 \%) // H \rightarrow L+1 (51 \%)$
18	24454.4	408.9	0.075	Mixed
21	25080.8	398.7	0.028	$H-2 \rightarrow L+1 (72 \%)$
22	25010.2	399.8	0.010	$H-5 \rightarrow L (80 \%)$
23	26613	375.8	0.037	$H-3 \rightarrow L+1 (72 \%)$
29	28456.2	351.4	0.073	Mixed
34	27771.5	360.1	0.027	$H-8 \rightarrow L (48 \%) // H-6 \rightarrow L (36 \%)$
41	30599.2	326.8	0.420	Mixed
43	31092.1	321.6	0.066	Mixed
45	31329.7	319.2	0.209	Mixed
46	24358.3	410.5	0.010	$H \rightarrow L+3 (98 \%)$
50	32060.6	311.9	0.044	$H-9 \rightarrow L (36 \%) // H-8 \rightarrow L+2 (25 \%)$
56	25903	386.1	0.020	$H-6 \rightarrow L+2 (98 \%)$
59	33507.2	298.4	0.032	$H \rightarrow L+5 (52 \%)$
63	34514.6	289.7	0.041	$H-10 \rightarrow L (61 \%)$
65	30940.1	323.2	0.010	$H-1 \rightarrow L+3 (92 \%)$
67	36326.6	275.3	0.022	$H-10 \rightarrow L+1 (80 \%)$
70	36495.3	274	0.312	Mixed

Table S5.3 TD-DFT calculated absorptions of $[Pt(^{tBu}L)]$ with $f_{osc} > 0.01$; character denotes leading orbital contributions.

transition	ν / cm ⁻¹	λ / nm	f _{osc}	character
2	14295.8	699.5	0.028	$H \rightarrow L (93 \%)$
5	17675.3	565.8	0.023	$H-1 \rightarrow L (85 \%)$
8	21679.3	461.3	0.018	$H \rightarrow L+1 (89 \%)$

9	22195.3	450.5	0.024	$H-2 \rightarrow L (77 \%)$
10	23887.1	418.6	0.153	$H-2 \rightarrow L (45 \%)$
18	26126.8	382.7	0.014	$H-2 \rightarrow L (52 \%)$
20	27841.8	359.2	0.324	Mixed
23	23913	418.2	0.019	$H-7 \rightarrow L (91 \%)$
25	29400.6	340.1	0.106	Mixed
28	29441.2	339.7	0.083	Mixed
30	29784.5	335.7	0.096	Mixed
34	28520	350.6	0.013	$H-3 \rightarrow L+1 (93 \%)$
42	32305.1	309.5	0.012	$H-5 \rightarrow L+1 (65 \%)$
44	32964.4	303.4	0.010	$H \rightarrow L+5 (66 \%)$
54	35643.4	280.6	0.037	Mixed
55	35732.1	279.9	0.036	$H-6 \rightarrow L+1 (40 \%)$
56	35929.9	278.3	0.159	mixed
58	31589.3	316.6	0.033	$H-1 \rightarrow L+4 (79 \%)$
65	36432.3	274.5	0.012	$H-13 \rightarrow L (48 \%)$
68	37678.2	265.4	0.207	mixed

Table S5.4 TD-DFT calculated absorptions of **[Ni(L)]** with f_{osc} > 0.01; character denotes leading orbital contributions.

transition	ν / cm ⁻¹	λ / nm	f _{osc}	character
5	15083.7	663	0.012	$H \rightarrow L (87 \%)$
11	18639.2	536.5	0.029	$H-1 \rightarrow L (82 \%)$
16	23089.4	433.1	0.017	$H \rightarrow L+2 (67 \%)$
20	23561.6	424.4	0.082	$H-3 \rightarrow L (48 \%)$
27	25785.2	387.8	0.018	$H-6 \rightarrow L+1 (46 \%)$
31	26858.9	372.3	0.036	$H-5 \rightarrow L (56 \%)$
33	28047	356.5	0.023	Mixed
34	28405.4	352	0.124	Mixed
35	28539.5	350.4	0.087	Mixed
36	29043.8	344.3	0.053	$H-8 \rightarrow L (68 \%)$
39	29530.9	338.6	0.021	Mixed
42	30819.5	324.5	0.333	Mixed
47	31203.7	320.5	0.011	H–7 \rightarrow L+2 (36 %) // H–5 \rightarrow L+2 (26 %)
49	31516.4	317.3	0.027	$H-9 \rightarrow L (74 \%)$
59	32989.1	303.1	0.010	$H-4 \rightarrow L+2 (55 \%)$
64	33693.5	296.8	0.040	$H \rightarrow L+5 (80 \%)$
70	34876.4	286.7	0.027	mixed

Table	S5.5	TD-DFT	calculated	absorptions	of	[Pd(L)]	with	\mathbf{f}_{osc}	>	0.01;	character	denotes	leading	orbital
contrib	oution	s.												

transition	ν / cm ⁻¹	λ / nm	f _{osc}	character
3	16087.5	621.6	0.021	$H \rightarrow L (96 \%)$
5	19081.4	524.1	0.014	$H-1 \rightarrow L (82 \%)$
14	23475.9	426	0.039	$H \rightarrow L+2 (67 \%)$
18	24714	404.6	0.09	$H-2 \rightarrow L (40 \%) // H-1 \rightarrow L+2 (35 \%)$
24	26619	375.7	0.034	$H-3 \rightarrow L+1 (63 \%)$
26	27520.5	363.4	0.017	H–4 \rightarrow L (52 %) // H–1 \rightarrow L+2 (34 %)
28	28470.1	351.2	0.05	$H-6 \rightarrow L (71 \%)$
30	28925.9	345.7	0.097	Mixed
32	29203.8	342.4	0.031	$H-3 \rightarrow L+2 (74 \%)$
41	30992.7	322.7	0.018	$H-7 \rightarrow L (94 \%)$
42	31236.9	320.1	0.035	$H-2 \rightarrow L+2 (68 \%)$
44	31558	316.9	0.03	$H-9 \rightarrow L (70 \%)$

48	31903.3	313.4	0.148	$H-8 \rightarrow L (67 \%)$
49	32104	311.5	0.362	Mixed
57	33695.6	296.8	0.02	$H-1 \rightarrow L+3 (88 \%)$
58	33760	296.2	0.109	$H-10 \rightarrow L (48 \%)$
59	34192.8	292.5	0.035	$H \rightarrow L+5 (50 \%)$
67	36184.9	276.4	0.035	$H-7 \rightarrow L+1 (88 \%)$
68	36273.6	275.7	0.044	$H-10 \rightarrow L+1 \ (62 \ \%)$
69	36456.3	274.3	0.075	Mixed
72	36890.4	271.1	0.061	$H-6 \rightarrow L+2 (43 \%)$
74	37036.9	270	0.017	$H-2 \rightarrow L+3 (96 \%)$

Table S5.6 TD-DFT calculated absorptions of **[Pt(L)]** with $f_{osc} > 0.01$; character denotes leading orbital contributions.

transition	ν / cm ⁻¹	λ / nm	f _{osc}	character		
2	15092.2	662.6	0.015	$H \rightarrow L (92 \%)$		
5	18968.9	527.2	0.034	$H-1 \rightarrow L (87 \%)$		
12	24392.1	410	0.151	$H-2 \rightarrow L (46 \%)$		
18	28003.1	357.1	0.046	$H-5 \rightarrow L (40 \%)$		
20	29085.9	343.8	0.185	Mixed		
24	29553.2	338.4	0.082	$H-3 \rightarrow L+1 (40 \%)$		
26	29784.3	335.7	0.092	Mixed		
27	29981.5	333.5	0.057	Mixed		
28	30023	333.1	0.017	Mixed		
30	30643.6	326.3	0.208	Mixed		
35	31314.5	319.3	0.033	$H-7 \rightarrow L (90 \%)$		
49	34354.1	291.1	0.034	Mixed		
51	34539.9	289.5	0.014	$H-1 \rightarrow L+3 (50 \%)$		
54	35425.4	282.3	0.063	$H-6 \rightarrow L+1 (74 \%)$		
57	36112.9	276.9	0.083	Mixed		
59	36277	275.7	0.034	$H-2 \rightarrow L+2 (76 \%)$		
63	37192.5	268.9	0.079	$H-3 \rightarrow L+4 (56 \%)$		
65	37434	267.1	0.017	$H-2 \rightarrow L+4 (50 \%)$		
66	37454	267	0.17	Mixed		

Table S6 Selected electrochemical data of the protoligands H_2L and $H_2t^{Bu}L$ and the complexes [M(L)] and[M(t^{Bu}L)] (M = Ni, Pd, Pt) a

	$E_{1/2\text{Red}3}$	$E_{1/2Red2}$	$E_{1/2\text{Red}1}$	$E_{1/2Ox1}$	E_{paOx2}	$\Delta E_{\text{Ox1-Red1}}$	$\Delta E_{\text{Red1-Red2}}$
H_2L	–3.12 irr	–2.36 irr	–1.94 irr	0.94 irr		2.88	0.42
[Ni(L)]	-2.72	-2.37	-1.70	0.66 irr		2.36	0.67
[Pd(L)]	–2.97 irr	-2.34	-1.66	0.72 irr		2.38	0.68
[Pt(L)]	–2.93 irr	-2.36	-1.65	0.69 irr		2.34	0.71
$H_2^{tBu}L$		-2.40 irr	–2.02 irr	0.59	1.14 irr	2.61	0.38
[Ni(^{tBu} L)]		-2.42	-1.75	0.56	0.99 irr	2.31	0.67
[Pd(tBuL)]	–2.88 irr	-2.35	-1.70	0.55	>1.15	2.25	0.65
[Pt(tBuL)]		-2.36	-1.69	0.55	0.97 irr	2.24	0.67

^a From cyclic voltammetry, electrochemical potentials in V (uncertainties ~1-3 mV), half-wave potentials $E_{1/2}$ for reversible and partially reversible redox waves and peak potentials E_{pc} or E_{pa} for irreversible (*irr*) waves; measured in 0.1 M *n*Bu₄NPF₆/MeCN at 298 K, scan rate 100 mV/s.