Supplementary Information

Rapid Atmospheric Carbon Dioxide Fixation by Nickel(II) Complexes: Meridionally Coordinated Diazepane-based 3N Ligands Facilitate Fixation

Tamilarasan Ajaykamal,^a Mitu Sharma,^b Nasreen S. Islam^b and Mallayan Palaniandavar^{a*}

^aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India ^bDepartment of Chemical Sciences, Tezpur University, Tezpur, Assam, India **Computed Structures of 1 and 2.** We have performed computational analysis by using Density Functional Theory (DFT). And the optimized geometry of complexes 1 and 2 are shown in **Fig S1**. The computed structural parameters of the complexes are provided in Table S2.

Fig. S1. The computed structures of cations of a) $[Ni(L1)(H_2O)_2](ClO_4)_2$ 1 and $[Ni(L2)(H_2O)_2](ClO_4)_2 \cdot 2H_2O$ 2

Fig. S2. The packing diagram of $[Ni_2(L1)_2(\mu-CO_3)(H_2O)_2](CIO_4)_2 \cdot 4H_2O$ 3

	3
Sum formula	$C_{25}H_{42}Cl_2N_6Ni_2O_{17}$
Formula weight	886.96
Temperature (K)	296(2)
Wavelength (Å)	0.71073
Crystal system	monoclinic
Space group	C2/c
a(Å)	22.909(10)
b(Å)	14.148(6)
c(Å)	12.037(5)
α(°)	90
β(°)	101.433(6)
γ (°)	90
Volume (Å ³)	3824(3)
Z	4
D_c (g.cm ⁻³)	1.541
Reflections collected	25799
Goodness-of-fit on F ²	1.022
Final R indices [I> 2σ (I)]	$0.0629, wR_2 = 0.1710$
R indices (all data)	$0.1049, wR_2 = 0.2037$

Table S1. Structure refinement details for $[Ni_2(L1)_2(\mu-CO_3)(H_2O)_2](ClO_4)_2 \cdot 4H_2O$ 3

_

Determination of magnetic moment of complex 1 and the intermediate derived from it

Evans' method was used of ¹H-NMR performed to determine the magnetic moment of complex **1** and the intermediate **1a** derived from it.^{S1-S2} A coaxial insert (with a sealed capillary) tube containing CD₃OD solvent (with 0.03% TMS) was inserted into the normal NMR tube containing the complex **1** (0.0053 M, with 0.03% TMS). We have calculated the chemical shift value of the TMS peak in the presence of the complex **1** in the outer NMR tube with respect to that of the TMS peak in the coaxial insert. The magnetic moment was calculated using the equation,

$$\begin{split} \mu_{eff} &= 0.0618 \; (\Delta vT \; / \; 2fM)^{1/2} \\ \mu_{eff} &= 0.0618 \times (32 \times 298 \; / \; 2 \times 400 \times 0.0053)^{1/2} \\ \mu_{eff} &= 2.93 \; BM \end{split}$$

Where f = oscillator frequency (400 MHz) of the superconducting spectrometer, T = absolute temperature, M = molar concentration of the complex 1, and v = difference in frequency (Hz) between the two TMS signals (**Fig. S3**). The magnetic moment of complex 1 was calculated as 2.91 BM in CD₃OD at RT, suggesting the presence of 2 unpaired electrons in complex 1. When Et₃N (0.0053 M, 50 μ L) was added to this solution to generate a red coloured solution no shift was observed illustrating the formation of an intermediate species (low-spin) with no unpaired electron.

Fig. S3. Evan's method: ¹H NMR of spectra [Ni(L1)(H₂O)₂](ClO₄)₂ 1

	1	2	1a	2a
N1-Ni-N2	77.9233	77.6300	83.15489	83.0770
N1-Ni-N3	160.9597	160.4098	168.9002	168.2117
N1-Ni-O1	102.1390	100.0281	100.2062	100.5885
N1-Ni-O2	96.9739	98.6302	-	-
N1-Ni-O3	95.5328	94.97454	-	-
N2-Ni-N3	83.1128	82.78310	86.2089	85.2117
N2-Ni-O1	176.4011	176.7345	176.4794	176.2916
N2-Ni-O2	100.9030	100.96143	-	-
N2–Ni–O3	94.2153	93.7329	-	-
N3-Ni-O1	96.8947	99.5575	90.3757	91.1363
N3–Ni–O2	84.8690	84.6499	-	-
N3–Ni–O3	87.4837	86.5886	-	-
O1-Ni-O2	82.6746	84.1666	-	-
O1–Ni–O3	82.1922	81.5814	-	-
O2–Ni–O3	162.0853	161.7781		-

 Table S2. Computed bond angles [°] of complexes 1, 2 and the intermediates 1a and 2a

Fig. S4. Electronic absorption spectra of $[Ni(L1)(H_2O)_3](ClO_4)_2$ **1** and $[Ni(L2)(H_2O)_3](ClO_4)_2 \cdot 2H_2O$ **2** in methanol solution at 25 °C. Conc: **1**, 4.5 × 10⁻³; **2**, 3.3 × 10⁻³ M)

Fig. S5. Differential Pulse Voltammetry (DPV) of complexes **1** (1.9×10^{-3} M) and **3** (1.8×10^{-3} M) in methanol solution at 25 °C. Conditions: supporting electrolyte, 0.1 M TBAP; Scan rate, 50 mVs⁻¹; reference electrode, Calomel; working electrode, Glassy carbon; Counter electrode, platinum plate

Fig. S6. Cyclic voltammogram (a) and DPV (b) of complex **2** (5.2×10^{-3}) in methanol solution at 25 °C. Conditions: supporting electrolyte, 0.1 M TBAP; Scan rate, 50 mVs⁻¹; reference electrode, Calomel; working electrode, Glassy carbon; Counter electrode, platinum plate.

Fig. S7. Cyclic voltammograms of complex 1 (1.9×10^{-3} M) in methanol solution at 25 °C at different scan rates.

Fig. S8. Cyclic voltammograms of complex 2 (5.2×10^{-3}) in methanol solution at 25 °C at different scan rates.

Fig. S9. Cyclic voltammograms of complex 3 (1.8×10^{-3} M) in methanol solution at 25 °C at different scan rates.

Fig. S10. Plots of i_{pc} (A) vs square root of scan rate (mV sec⁻¹)

Fig. S11. Electronic absorption spectra of complexes 1 and the intermediate 1a formed from 1 in methanol solution upon addition of Et₃N (2×10^{-4} M) to 1 (1×10^{-4} M) at 25 °C.

Fig. S12. Electronic absorption spectra of 2 and the intermediate 2a formed from 2 in methanol solution upon addition of Et₃N (2×10^{-4} M) to 2 (1×10^{-4} M) at 25 °C.

Fig. S13. Decrease in absorption of 2a, generated in situ by adding Et₃N (4 × 10⁻⁴ M) to 2 (2 × 10⁻⁴ M), upon exposure to atmospheric CO₂, followed at 1 min interval at 25 °C.

Fig. S14. Plot of ln(Abs) vs time observed at 463 nm, k_{obs} , $5.8 \pm 0.3 \times 10^{-4} \text{ s}^{-1}$; $t_{1/2} = 0.33 \text{ hrs}$.

Table S3.	Computed	structural	parameters	of the	HOMO	and LUMO	energy	values	for	the
intermedia	te complex	species 1a	and 2a							

	1a	2a
HOMO-2 (eV)	-7.2507	-6.9416
HOMO-1 (eV)	-6.6023	-6.5294
HOMO (eV)	-6.3604	-6.2700
LUMO (eV)	-1.8444	-1.6393
LUMO+1 (eV)	-1.6501	-0.4705
LUMO+2 (eV)	-1.2139	-0.1295

 Table S4. Computed energy gap values for complexes 1a and the intermediate 2a

Band gap (eV)	1a	2a
HOMO – LUMO (eV)	4.5160	4.6307
LUMO – LUMO+1 (eV)	0.1943	1.1688

Fig. S15. Schematic MO diagram for the intermediate complex 1a

Fig. S16. Schematic MO diagram for the intermediate complex species 2a

Scheme S1. Conversion of epoxide into cyclic carbonates.

Table S5. Reaction of Styrene epoxide (10 mmol) with 1 atm pure CO₂ using catalyst **3** (0.05 mol%) and Et₃N as a base (6 μ M) for a period of 8 hrs.

Entry	Temperature (°C)	Yield (%)	TON	TOF (h ⁻¹)	Selectivity (%)
1	30	9	180	23	>99
2	40	25	500	63	>99
3	50	39	780	98	>99
4	60	55	1100	138	>99
5	80	72	1440	180	>99

Fig. S17. GC-MS spectra of 4-phenyl-1,3-dioxolan-2-one.

Fig. S18. High Resolution Mass Spectra of L1 in methanol solution $(1 \times 10^{-3} \text{ M})$ at 25 °C.

Fig. S19. High Resolution Mass Spectra of L2 in methanol solution $(1 \times 10^{-3} \text{ M})$ at 25 °C.

D:\January-2020-Onwards\Ni-Hm-Py-3N

09/23/20 12:58:23

Fig S20. High Resolution Mass Spectra of $[Ni(L1)(H_2O)_3](ClO_4)_2$ **1** in methanol solution $(1 \times 10^{-3} \text{ M})$ at 25 °C.

Fig. S21. High Resolution Mass Spectra $[Ni(L2)(H_2O)_3](ClO_4)_2 \cdot 2H_2O$ **2** in methanol solution (1 × 10⁻³ M) at 25 °C.

10/23/19 13:10:05

Fig. S22. High Resolution Mass Spectra of intermediate 1a methanol solution (1 \times 10⁻³ M) at 25 °C.

10/23/19 13:13:15

Fig. S23. High Resolution Mass Spectra of the intermediate 1a in ethanol solution $(1 \times 10^{-3} \text{ M})$ at 25 °C.

Fig. S24. High Resolution Mass Spectra of the intermediate 1a in isopropanol solution (1×10^{-3} M) at 25 °C.

08/09/19 15:45:07

Fig. S25. High Resolution Mass Spectra of $[Ni_2(L1)_2(\mu-CO_3)(H_2O)_2](ClO_4) \cdot 2H_2O$ **3** in methanol solution $(1 \times 10^{-3} \text{ M})$ and at 25 °C.

References

- S1. D. F. Evans, J. Chem. Soc. 1959, 2003-2005.
- S2. J. Lölinger, R. Scheffold, J. Chem. Edu., 1972, 646-647.