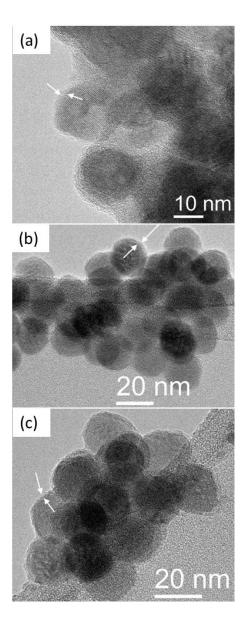
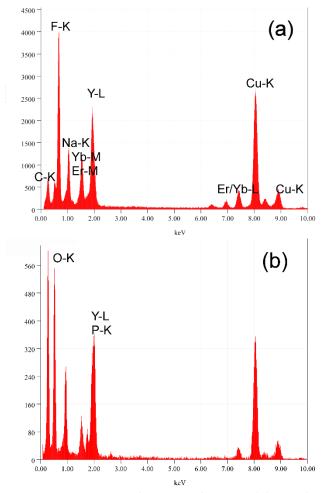

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021


Supporting Information

Formation of phosphonate coatings for the improved chemical stability of upconverting nanoparticles under physiological conditions


Maša Vozlič,^{a,b} Tina Černič,^{a,c} Sašo Gyergyek,^a Boris Majaron,^{d,e} Maja Ponikvar-Svet,^f Uliana Kostiv,^g Daniel Horák,^g and Darja Lisjak*^c

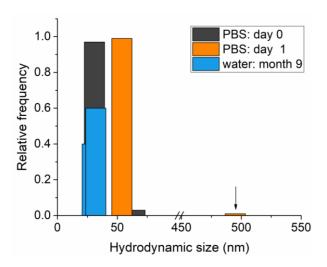

Fig. S1 TEM images of the as-synthesized α -NPs with the corresponding SAED (a), and of the α -NPs coated with the nominal ligand fraction of 10 EDTMP/nm² using US agitation for 2 h (b). The indices in the SAED (a) correspond to cubic S.G. Fm $\overline{3}$ m (225). The arrows in (b) indicate the amorphous coating.

Fig. S2 TEM images of coated β -UCNPs with EDTMP (a), AL (b) and PEG-Ner (c). All β -UCNPs were coated with nominal ligand fraction 10 molecules/nm². The EDTMP coating (a) was prepared in US bath and the other two coatings (b and c) were obtained at 80 °C. Arrows point to the amorphous coating.

Fig. S3 EDXS spectra of the bare β -UCNPs (a) and β -UCNPs@EDTMP (b). Cu-K and C-K peaks originate from the TEM supporting grid but in the panel (b) C-K peak also originates from the coating.

Fig. S4 Number-weighted hydrodynamic-size distribution of the UCNPs@PEG-Ner (made at 80 °C) in PBS and water. An arrow points at the large size fraction, measured 1 day after the immersion of UCNPs@PEG-ner in PBS.