Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information for

Borane-Catalysed Dinitrogen Borylation by 1,3-B–H Bond Addition

Anaïs Coffinet, Dan Zhang, Laure Vendier, Sébastien Bontemps and Antoine Simonneau*

LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077 Toulouse cedex 4, France.

E-mail: antoine.simonneau@lcc-toulouse.fr

Table of Contents

1. Characterization Data of New Compounds	2
1.1. Generation of tricyclohexyldiborane	.2
1.2. Compound 7	.3
1.3. Generation of triisopinocampheyldiborane	.5
1.4. Compound 8	.6
1.5. Compound 9 in the reaction mixture	.8
1.6. Compound 10	10
1.7. Reaction between compound 9 and $HB(C_6F_5)_2$ (1)	13
1.8. Reaction between compound 3 and 9-BBN	14
1.9. Reaction between compound 10 and Lewis bases	14
1.10. Reaction between 9-BBN and $HB(C_6F_5)_2$ (1)	15
1.11. Compound 11	16
1.12. Formation of complex 9 with HBcat as a catalyst	18
2. Crystallography	19
2.1. Data Collection and Refinement	19
2.2. X-ray Analysis of Compound 7 (CCDC)	20
2.3. X-ray Analysis of Compound 10 (CCDC)	21
2.4. X-ray Analysis of Compound 11 (CCDC)	22
3. References	23

1. Characterization Data of New Compounds

1.1. Generation of tricyclohexyldiborane

HBCy₂ (13.8 mg, 77 μ mol) was introduced in a flask in a glovebox and was partially dissolved in 0.5 mL of C₆D₆. The solution was then heated at 60 °C for 1 h to give a homogeneous solution that was subsequently analyzed by NMR.

¹¹**B NMR** (128 MHz, C₆D₆) δ 81.9 (*B*Cy₃), 35.9 (Cy₂*B*H₂BHCy), 17.6 (Cy₂BH₂BHCy).

Figure S1. ¹¹B NMR spectrum (128.4 MHz, C₆D₆).

1.2. Compound 7

66

 $\frac{1}{2}$ -29.32 -30.02 -30.73

1.3. Generation of triisopinocampheyldiborane

HBlpc₂ (17.2 mg, 60 μ mol) is introduced in a flask in a glovebox and is dissolved in 0.5 mL of C₆D₆ giving a homogeneous solution that was subsequently analyzed by NMR.

RMN ¹¹**B** (128 MHz, C₆D₆) δ 37.5 (Ipc₂BH₂BHIpc), 18.7 (Ipc₂BH₂BHIpc).

Figure S6. ¹¹B NMR spectrum (128.4 MHz, C₆D₆) with exponential apodization and multiple point baseline correction.

1.4. Compound 8

6

Z-29.28

Fig. S10. FT IR (ATR) spectrum

1.5. Compound 9 in the reaction mixture

Figure S11. ¹H NMR spectrum (400 MHz, C₆D₆)

Figure S14. ¹⁹F NMR spectrum (377 MHz, C₆D₆)

Diffusion-ordered spectroscopy (DOSY)

This experiment was run on a Bruker Avance NEO 600, directly on the reaction mixture of **2**, 9-BBN and catalytic amounts of **1**. After 14 d of heating the C_6D_6 solution, **2** and **9** are present in a ca. 25:75 mixture according to ³¹P NMR integration. Diffusion coefficients are expressed in cm²·s⁻¹. Gaussian fit to diffusion peak intensities gives a diffusion coefficient D of $5.07 \cdot 10^{-6}$ cm²·s⁻¹ for [W(depe)₂(N₂)₂] (**2**) and $4.64 \cdot 10^{-6}$ cm²·s⁻¹ for **9**. Using the Stokes-Einstein equation, the Stokes radius of **2** and **9** were estimated to 6.1 and 6.7 Å, respectively. The closeness of these radii indeed suggests that **9** is monomeric in solution.

2.10 2.05 2.00 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 1.55 1.50 1.45 1.40 1.35 1.30 1.25 1.20 1.15 1.10 1.05 1.00 0.95 0.90 0.85 0.80 0.75 0.70

1.6. Compound **10**

Figure S17. ³¹P{¹H} NMR spectrum (162 MHz, C₆D₆)

T		· · ·												- · ·											1					
250	240	230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	-5
														f:	l (ppm	1)														

Figure S20. FT IR (ATR) spectrum

1.7. Reaction between compound **9** and $HB(C_6F_5)_2$ (**1**)

Compound **9** was formed *in-situ* and then $HB(C_6F_5)_2$ **1** was added. We monitored the reaction by NMR spectroscopy. Four different products were observed during the reaction leading mainly to the formation of compound **10**.

Figure S21. Stacked ³¹P NMR spectra (162 MHz, C₆D₆) monitoring the reaction of 9 with HB(C₆F₅)₂

1.8. Reaction between compound 3 and 9-BBN

Compound **3** was formed *in-situ* and then 9-BBN was added. We monitored the reaction by NMR spectroscopy leading mainly to the formation of compound **10**.

Figure S22. Stacked ³¹P NMR spectra (162 MHz, C₆D₆) monitoring the reaction of 3 with 9-BBN

1.9. Reaction between compound 10 and Lewis bases

After formation of compound **10** *in-situ*, a drop (excess) of PMe_3 , C_5H_5N or TMEDA was added. After prolongated heating no reaction could be observed in any cases.

After formation of compound **10** *in-situ*, one equivalent of compound **2** was added and prolongated heating gave no reaction (only traces of compound **3** could be observed).

1.10. Reaction between 9-BBN and $HB(C_6F_5)_2$ (1)

In a glovebox, 9-BBN (2.6 mg, 21 μ mol, 1.0 equiv.) and HB(C₆F₅)₂ (**1**, 0.8, 2.3 μ mol, 0.11 equiv.) were weighed in a 4-mL vial and solubilized in 0.5 mL of C₆D₆. The reaction was monitored by NMR spectroscopy and led to an equilibrated mixture between at least three compounds.

Figure S23. Stacked ³¹P NMR spectra (162 MHz, C_6D_6) monitoring the reaction of HB(C_6F_5)₂ with 9-BBN

Figure S24. ¹¹B NMR spectrum after cooling to RT for 1 day (128.4 MHz, C₆D₆). Exponential apodization and multiple point baseline correction were applied.

1.11. Compound 11

Figure S27. ¹¹B NMR (128.4 MHz, C₆D₆)

1.12. Formation of complex 9 with HBcat as a catalyst

In a glovebox, *trans*-[W(N₂)₂(depe)₂] (**2**, 19.7 mg, 30 µmol, 1.0 equiv.), 9-BBN (3.8 mg, 30 µmol, 1.0 equiv.) and HBcat (0.5 µL of a 10% solution in C_6D_6 , 2.3 µmol, 0.11 equiv.) were weighted in a 4-mL vial and dissolved in 0.5 mL of C_6D_6 . The resulting solution was transferred to an NMR tube equipped with a J. Young valve and the reaction was monitored by NMR spectroscopy.

Figure S28. Stacked ³¹P NMR (162 MHz, C₆D₆)

2. Crystallography

2.1. Data Collection and Refinement

Data for compounds **7**, **10** and **11** were collected at low temperature (100 K) on a Bruker Kappa Apex II diffractometer using a Mo-K α radiation (I = 0.71073Å) micro-source and equipped with an Oxford Cryosystems Cryostream Cooler Device. The structures have been solved by Direct Methods and refined by means of least-squares procedures using the SHELXS97^[S1] program included in the softwares package WinGX version $1.63^{[S2]}$ or with the aid of the software package Crystal^[S3]. The Atomic Scattering Factors were taken from International tables for X-Ray Crystallography^[S4]. Hydrogen atoms bonding with boron and tungsten were anisotropically refined; all other hydrogen atoms were placed geometrically and refined using a riding model. All non-hydrogens atoms were anisotropically refined. Drawing of molecules in the following figures were performed with the program ORTEP32^[S5] with 30% probability displacement ellipsoids for non-hydrogen atoms. The crystal structures have been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition numbers **CCDC 2058894-2058896**.

2.2. X-ray Analysis of Compound 7 (CCDC 2058894)

Figure S29. X-ray crystal structure of complex 7, with ellipsoids set at the 30% probability level; hydrogen atoms omitted for clarity at the exception of those bound to heteroatoms.

Table S1. Crystallographic data for 7.								
Chemical formula	$C_{32}H_{74}B_2N_2P_4W$							
Mr	816.32							
Crystal system, space group	Monoclinic, P2 ₁ /n							
Temperature (K)	100 K							
a, b, c (A)	12.04190 (2), 20.70460 (3), 15.84060 (3)							
α, β, γ (°)	92.842 (3)							
V (Å ³)	3944.56 (2)							
Z	4							
Radiation type	Mo K α radiation, λ = 0.71073 Å							
μ (mm ⁻¹)	3.11							
Crystal size (mm)	0.10 × 0.04 × 0.02							
Data collection								
Diffractometer	Bruker Kappa APEX II diffractometer							
Absorption correction	multi-scan SADABS (Siemens, 1996)							
Tmin, Tmax	0.84, 0.94							
No. of measured, independent and observed [I > $2\sigma(I)]$ reflections	113933, 9696, 6634							
Rint	0.138							
θmax (°)	28.3							
Refinement								
$R[F^2 > 2\sigma(F^2)]$, wR(F ²), S	0.049, 0.024, 09.0							
No. of reflections	6630							
No. of parameters	382							
H-atom treatement	H atoms treated by a mixture of independent and constrained refinement							
Δρmax, Δρmin (e Å⁻³)	4.80, -4.01							

2.3. X-ray Analysis of Compound 10 (CCDC 2058896)

Figure S30. X-ray crystal structure of complex 10, with ellipsoids set at the 30% probability level; hydrogen atoms omitted for clarity at the exception of those bound to heteroatoms.

Chemical formula	C87H136B4F20N4P8W2
Mr	2276.76
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	110 K
a, b, c (A)	21.15760 (4), 19.95340 (4), 23.90660 (4)
α, β, γ (°)	106.795 (3)
V (Å ³)	9662.06 (13)
Z	4
Radiation type	Mo K α radiation, λ = 0.71073 Å
μ (mm ⁻¹)	2.60
Crystal size (mm)	0.12 × 0.07 × 0.02
Data collection	
Diffractometer	Bruker Kappa APEX II diffractometer
Absorption correction	multi-scan SADABS (Siemens, 1996)
Tmin, Tmax	0.71, 0.95
No. of measured, independent and observed [I > $2\sigma(I)$] reflections	77544, 8550, 4245
Rint	0.166
θmax (°)	25.1
Refinement	
$R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S	0.041, 0.041, 0.92
No. of reflections	4240
No. of parameters	566
H-atom treatement	H atoms parameters constrained
Δρmax, Δρmin (e Å-3)	1.30 –1.88

 Table S2. Crystallographic data for 10.

 Chamical formula

2.4. X-ray Analysis of Compound 11 (CCDC 2058895)

Figure S31. X-ray crystal structure of complex 11, with ellipsoids set at the 30% probability level; hydrogen atoms omitted for clarity at the exception of those bound to heteroatoms.

Table S3. Crystallographic data for 11.								
Chemical formula	$C_{52}H_{106}B_2N_4O_4P_8W_2$							
Mr	1488.55							
Crystal system, space group	Triclinic, P-1							
Temperature (K)	110 K							
a, b, c (A)	12.6243 (9), 15.7892 (11), 16.1110 (12)							
α, β, γ (°)	91.132 (2), 91.227 (2), 92.249 (2)							
V (Å3)	3207.5 (4)							
Z	2							
Radiation type	Mo K α radiation, λ = 0.71073 Å							
μ (mm-1)	3.83							
Crystal size (mm)	0.12 × 0.08 × 0.02							
Data collection								
Diffractometer	Bruker Kappa APEX II diffractometer							
Absorption correction	multi-scan SADABS (Siemens, 1996)							
Tmin, Tmax	0.77, 0.93							
No. of measured, independent and observed [I > $2\sigma(I)]$ reflections	86276, 18961, 14292							
Rint	0.061							
θmax (°)	30.2							
Refinement								
$R[F2 > 2\sigma(F2)]$, wR(F2), S	0.033, 0.032, 1.07							
No. of reflections	13329							
No. of parameters	675							
H-atom treatement	H atoms treated by a mixture of independent and constrained refinement							
Δρmax, Δρmin (e Å-3)	1.56, -1.09							

3. References

[S1] SHELX97 [Includes SHELXS97, SHELXL97, CIFTAB] - Programs for Crystal Structure Analysis (Release 97-2). G. M. Sheldrick, Institüt für Anorganische Chemie der Universität, Tammanstrasse 4, D-3400 Göttingen, Germany, 1998.

[S2] L. J. Farrugia, J. Appl. Crystallogr. 1999, **32**, 837.

[S3] CRYSTALS version 12: software for guided crystal structure analysis, P. W.
 Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout and D. J. Watkin, *J. Appl. Cryst.* 2003, 36, 1487.

[S4] International Tables for X-Ray Crystallography Vol. IV, Kynoch press, Birmingham, England, 1974.

[S5] L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565.