Supplementary Information

Self-supported wire-in-plate NiFeS/CoS nanohybrids with hierarchical

structure for efficient overall water splitting

Jiaruo Tang, Xiaoli Jiang, Lin Tang, Yao Li, Qiaoji Zheng*, Yu Huo, Dunmin

Lin

College of Chemistry and Materials Science, Sichuan Normal University

Chengdu 610066, China

^{*} Corresponding authors: Tel.: +86 28 84760802; Fax: +86 28 84760802; E-mail: joyce@sicnu.edu.cn (Qiaoji Zheng)

Fig. S1 (a) The XRD pattern of NiFe LDHs/Co(OH)₂; (b) and (c) SEM images of NiFe LDHs/Co(OH)₂; (d) SEM image of NiFe LDHs.

Fig. S2 The mapping spectrum of NiFeS/CoS.

Fig. S3 The EDX spectrum of NiFeS/CoS.

Fig. S4 XPS survey spectra of NiFeS/CoS and NiFe LDHs/Co(OH)₂.

Fig. S5 Polarization curves of NiFeS/CoS and RuO_2 in OER.

Fig. S6 (a) XRD pattern; (b) SEM image; (c) and (d) TEM images; (e) HR-TEM

image and (f) SAED pattern of NiFeS/CoS after OER.

Fig. S7 The XPS spectra of (a) Co 2p, (b) Ni 2p, (c) Fe 2p, (d) O 1s for NiFeS/CoS after OER.

Fig. S8 CV curves of (a) NiFeS/CoS, (b) NiFe LDHs/Co(OH)₂, (c) NiFeS, (d) NiFe LDHs, (e) CoS, (f) Co(OH)₂.

Fig. S9 The double-layer capacitances of (a) NiFeS/CoS, (b) NiFe LDHs/Co(OH)₂,
(c) NiFeS, (d) NiFe LDHs, (e) CoS, (f) Co(OH)₂.

Fig. S10 CV curves at the different scan rates for (a) NiFeS/CoS, (b) NiFe LDHs/Co(OH)₂.

Fig. S11 Polarization curves of NiFeS/CoS and Ni foam in OER.

Fig. S12 Polarization curves of NiFeS/CoS and Pt/NS in HER.

Fig. S13 (a) LSV curves before and after 1000 cycles for HER; (b) the Multi-step chronopotentiometric plot of NiFeS/CoS in HER.

Fig. S14 (a) The XRD image; (b) the SEM image of NiFeS/CoS after HER.

Fig. S15 The XPS spectra of (a) Co 2p, (b) Ni 2p, (c) Fe 2p, (d) S 2p for NiFeS/CoS after HER.

Catalyst	Electrolyte	η _{j=100} (mV)	$\eta_{j=10}$ (mV)	Tafel slope (mV dec ⁻¹)	Catalyst weight (mg cm ⁻ ²)	Refe renc e
NiFeS/CoS	1 M KOH	230	/	54.7	4.6	This work
S-NiCoFe LDH	1 M KOH	258	/	46	1.18	1
Ni _{3.5} Co _{5.5} S ₈ NAHNs	1 M KOH	/	333	48.8	/	2
$Ni_{0.7}Fe_{0.3}S_2$	1 M KOH	287	198	56	3	3
Ni ₃ S ₂ -FeS-CoS/PNFCF	1 M KOH	≈160	90	76	/	4
Co ₄ Fe ₂ - LDHs/CO(OH) ₂ -NWs	1 M KOH	231	/	51	/	5
CoFeP-1.8	1 M KOH	242	/	53	3.14	6
Ni/NiS/NC	1 M KOH	/	337	45	0.92	7
Fe-Ni ₃ S ₂ /NF	1 M KOH	249	214	54	4-6	8
NiFe-LDH@NiFe- B _i /CC	1 M KOH	/	444	50	/	9
Cu(OH) ₂ @CoCO ₃ (OH) ₂ ·nH ₂	1 M KOH	\approx 270	/	78	15	10

 Table S1. Comparison of the OER performance for the obtained materials in this

 work with other state-of-the-art OER electrocatalysts.

Catalyst	Electrolyte	Current density (mA cm ⁻²)	Overpot ential (mV)	Catalyst weight (mg cm ⁻ ²)	Tafel slope (mV dec ⁻¹)	Referen ce
NiFeS/CoS	1 M KOH	150	150	4.6	42.4	This work
$(Ni_{0.33}Fe_{0.67})_2P$	1 M KOH	\approx 40	150	2	/	11
Ni _{0.7} Fe _{0.3} S ₂	1 M KOH	≈ 10	150	3	109	3
Ni _{0.75} Fe _{0.125} V _{0.12} 5-LDHs	1 M KOH	\approx 40	150	/	62	12
Fe _{17.5%} - Ni ₃ S ₂ /NF	1 M KOH	≈ 20	150	/	95	8
IFONFs-45	1 M KOH	≈ 60	150	/	31	13
FeCoNiP ₀ S ₁	1 M KOH	$\approx \! 180$	150	/	99	14
Ni ₃ S ₂ -FeS- CoS/PNFCF	1 М КОН	≈45	150	/	68	15
NiFeSP/N	1 M KOH	≈ 65	150	4.2	82.6	16

 Table S2. Comparison of the HER performance for the obtained materials in this

 work with other state-of-the-art HER electrocatalysts.

Catalyst	Electrolyte	η _{j=100} (mV)	double - lay er capacitance (mF cm ⁻²)	Reference
NiFeS/CoS	1 M KOH	1.81	113.6	This work
CoFeP-x (x=1.8 and 2.4)	1 M KOH	1.62	23.0 and 27.82	6
NiMoN NiMoN	1 M KOH	1.56	82.68	17
Ni ₃ FeN/r-GO Ni ₃ FeN/r-GO	1 M KOH	1.65	15.9	18
Cu@NiFe LDH Cu@NiFe LDH	1 M KOH	1.69	59.8	19
FeMnP/GNF FeMnP/ GNF	1 M KOH	1.67	71	20
Ni ₁ Mo ₁ P NSs@MCNTs	1 M KOH	1.8	170	21
Fe17.5%-Ni ₃ S ₂ /NF	1 M KOH	1.70	206.5	8
$Ni_{0.7}Fe_{0.3}S_2$	1 M KOH	≈ 1.83	/	3

 Table S3. Comparison of the overall water splitting performance for the obtained

 materials in this work with other state-of-the-art bifunctional electrocatalysts.

References

- L.-M. Cao, J.-W. Wang, D.-C. Zhong, T.-B. Lu, J. Mater. Chem. A., 2018, 6,3224-3230.
- V. Ganesan, P. Ramasamy, J. Kim, Int. J. Hydrogen Energy., 2017, 42, 5985-5992.
- 3. J. Yu, G. Cheng, W. Luo, J. Mater. Chem. A., 2017, 5, 15838-15844.
- Q. Zhang, W. Chen, G. Chen, J. Huang, C. Song, S. Chu, R. Zhang, G. Wang,
 C. Li, K.K. Ostrikov, *Appl. Catal.*, B, 2020, **261**, 118254.
- L. Zhou, M. Guo, Y. Li, Q. Gu, W. Zhang, C. Li, F. Xie, D. Lin, Q. Zheng, *Chem Commun (Camb).*, 2019, 55, 4218-4221.
- W. Zhang, Y. Li, L. Zhou, Q. Zheng, F. Xie, K.H. Lam, D. Lin, *Electrochimica Acta.*, 2019, **323**, 134595.
- J. Ding, S. Ji, H. Wang, H. Gai, F. Liu, V. Linkov, R. Wang, *Int. J. Hydrogen Energy.*, 2019, 44, 2832-2840.
- G. Zhang, Y.-S. Feng, W.-T. Lu, D. He, C.-Y. Wang, Y.-K. Li, X.-Y. Wang,
 F.-F. Cao, ACS Catal., 2018, 8, 5431-5441.
- 9. L. Yang, L. Xie, R. Ge, R. Kong, Z. Liu, G. Du, A.M. Asiri, Y. Yao, Y. Luo, ACS Appl Mater Interfaces., 2017, 9, 19502-19506.
- 10. L. Xie, C. Tang, K. Wang, G. Du, A.M. Asiri, X. Sun, Small., 2017, 13, 1602755.
- Y. Li, H. Zhang, M. Jiang, Q. Zhang, P. He, X. Sun, *Adv. Funct. Mater.*, 2017, 27, 1702513.

- K.N. Dinh, P. Zheng, Z. Dai, Y. Zhang, R. Dangol, Y. Zheng, B. Li, Y. Zong,
 Q. Yan, *Small.*, 2018, 14, 1703257.
- X. Fan, Y. Liu, S. Chen, J. Shi, J. Wang, A. Fan, W. Zan, S. Li, W.A. Goddard,
 3rd, X.M. Zhang, *Nat Commun.*, 2018, 9, 1809.
- X. Wang, W. Ma, C. Ding, Z. Xu, H. Wang, X. Zong, C. Li, ACS. Catal., 2018, 8, 9926-9935.
- Q. Zhang, W. Chen, G. Chen, J. Huang, C. Song, S. Chu, R. Zhang, G. Wang,
 C. Li, K.K. Ostrikov, *Appl. Catal.*, B, 2020, **261**, 118254.
- 16. Y. Xin, X. Kan, L.Y. Gan, Z. Zhang, ACS Nano., 2017, 11, 10303-10312.
- B. Chang, J. Yang, Y. Shao, L. Zhang, W. Fan, B. Huang, Y. Wu, X. Hao, *ChemSusChem.*, 2018, **11**, 3198-3207.
- Y. Gu, S. Chen, J. Ren, Y.A. Jia, C. Chen, S. Komarneni, D. Yang, X. Yao, ACS nano., 2018, 12, 245-253.
- L. Yu, H. Zhou, J. Sun, F. Qin, F. Yu, J. Bao, Y. Yu, S. Chen, Z. Ren, *Energy*. *Environ. Sci.*, 2017, **10**, 1820-1827.
- Z. Zhao, D.E. Schipper, A.P. Leitner, H. Thirumalai, J.-H. Chen, L. Xie, F. Qin, M.K. Alam, L.C. Grabow, S. Chen, *Nano Energy.*, 2017, **39**, 444-453.
- H. Xu, J. Wei, K. Zhang, Y. Shiraishi, Y. Du, ACS appl. mater. Inter., 2018, 10, 29647-29655.