Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Electrical Supporting Information

A novel approach to characterization of a relatively unstable intercalation compound under ambient conditions: revisiting a kaolinite-acetone intercalation compound

Shingo Machida^{a,b}, Régis Guégan^c and Yoshiyuki Sugahara^{b,d*}

 ^aDepartment of Material Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
^bKagami Memorial Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan

^cGlobal Center for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan ^dDepartment of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan **Figures S**

Figure S1. FTIR spectra in the 3800-2800 cm⁻¹ range of (a) Acetone/Kaol-NMF_paste_to_dried, (b) Acetone/Kaol-NMF_paste and (c) acetone.

Figure S2. The ¹³C NMR spectra of (a) acetone in CDCl₃ and (b) Acetone_ext_CDCl₃.