Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Electronic Supporting Information for

Strong Two-photon Absorption and Ultrafast Dynamics in *Meso*-Functionalized "Push-Pull" *Trans*-A₂BC Porphyrins

Sandeep Kumar,^a Jitendra Nath Acharyya,^b Dipanjan Banerjee,^c Venugopal Rao Soma,^{c,*} G. Vijaya Prakash^{b,*} and Muniappan Sankar^{a,*}

^aDepartment of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India.

^bNanophotonics Lab, Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

^cAdvanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, Telangana, India

*Authors for Correspondence: <u>soma_venu@uohyd.ac.in</u>; <u>prakash@physics.iitd.ac.in</u>; m.sankar@cy.iitr.ac.in

Table of Contents:

Page No.

Figure S1	¹ H NMR of <i>trans</i> -H ₂ A ₂ BC (1) in CDCl ₃ at 298 K.	4
Figure S2	¹ H NMR of <i>trans</i> -ZnA ₂ BC (1a) in CDCl ₃ at 298 K.	5
Figure S3	¹ H NMR of <i>trans</i> -NiA ₂ BC (1c) in CDCl ₃ at 298 K.	5
Figure S4	¹ H NMR of <i>trans</i> -H ₂ A ₂ BC (2) in CDCl ₃ at 298 K.	6
Figure S5	¹ H NMR of <i>trans</i> -ZnA ₂ BC (2a) in CDCl ₃ at 298 K.	6
Figure S6	¹ H NMR of <i>trans</i> -NiA ₂ BC (2c) in CDCl ₃ at 298 K.	7
Figure S7	¹³ C NMR of <i>trans</i> -H ₂ A ₂ BC (1) in CDCl ₃ at 298 K.	7
Figure S8	¹³ C NMR of <i>trans</i> -ZnA ₂ BC (1a) in CDCl ₃ at 298 K.	8

Figure S9	¹³ C NMR of <i>trans</i> -NiA ₂ BC (1c) in CDCl ₃ at 298 K.	8
Figure S10	¹³ C NMR of <i>trans</i> -H ₂ A ₂ BC (2) in CDCl ₃ at 298 K.	9
Figure S11	¹³ C NMR of <i>trans</i> -ZnA ₂ BC (2a) in CDCl ₃ at 298 K.	9
Figure S12	¹³ C NMR of <i>trans</i> -NiA ₂ BC (2c) in CDCl ₃ at 298 K.	10
Figure S13	MALDI-TOF mass spectrum of <i>trans</i> - H_2A_2BC (1) in DCM in a positive ion mode.	10
Figure S14	MALDI-TOF mass spectrum of <i>trans</i> -ZnA ₂ BC (1a) in DCM in a positive ion mode.	11
Figure S15	MALDI-TOF mass spectrum of <i>trans</i> -CuA ₂ BC (1b) in DCM in a positive ion mode.	11
Figure S16	MALDI-TOF mass spectrum of <i>trans</i> -NiA ₂ BC (1c) in DCM in a positive ion mode.	12
Figure S17	MALDI-TOF mass spectrum of <i>trans</i> - H_2A_2BC (2) in DCM in a positive ion mode.	12
Figure S18	MALDI-TOF mass spectrum of <i>trans</i> -ZnA ₂ BC (2a) in DCM in a positive ion mode.	13
Figure S19	MALDI-TOF mass spectrum of <i>trans</i> -CuA ₂ BC (2b) in DCM in a positive ion mode.	13
Figure S20	MALDI-TOF mass spectrum of <i>trans</i> -NiA ₂ BC (2c) in DCM in a positive ion mode.	14
Figure S21	(a) UV-visible Spectra of free base <i>trans</i> -H ₂ A ₂ BC (2) and <i>trans</i> -ZnA ₂ BC (2a) in DCM at 298 K. (b) Emission Spectra of free base <i>trans</i> -H ₂ A ₂ BC (2) and <i>trans</i> -ZnA ₂ BC (2a) in DCM at 298 K.	14
Figure S22	Comparative UV-visible spectra of <i>trans</i> -MA ₂ BC (M= Cu(II) (1b), Ni(II) (1c), Cu(II) (2b), and Ni(II) (2c)) in DCM.	15
Figure S23	(a) Comparative cyclic voltammograms of $trans$ -ZnA ₂ BC porphyrins 1a and 2a with respect to ZnTPP in CH ₂ Cl ₂ containing TBAPF ₆ as a supporting electrode at 298 K. (b) Energy level diagram of $trans$ -ZnA ₂ BC porphyrins 1a and 2a with respect to ZnTPP.	15

Figure S24	(a) Comparative cyclic voltammograms of <i>trans</i> -CuA ₂ BC porphyrins 1b and 2b with respect to CuTPP in CH ₂ Cl ₂ containing TBAPF ₆ as a supporting electrode at 298 K. (b) Energy level diagram of <i>trans</i> -CuA ₂ BC porphyrins 1b and 2b with respect to CuTPP.	16
Figure S25	(a) Comparative cyclic voltammograms of <i>trans</i> -NiA ₂ BC porphyrins $1c$ and $2c$ with respect to NiTPP in CH ₂ Cl ₂ containing TBAPF ₆ as a supporting electrode at 298 K. (b) Energy level diagram of <i>trans</i> -NiA ₂ BC porphyrins $1c$ and $2c$ with respect to NiTPP.	16
Figure S26	Deviation of core atoms of porphyrin ring from the mean plane for synthesized <i>trans</i> - H_2A_2BC porphyrin 2 from single crystal XRD structure.	18
Figure S27	Frontier molecular orbitals of <i>trans</i> -H ₂ A ₂ BC 1 using DFT calculation at the B3LYZ/LANL2DZ level.	19
Figure S28	Frontier molecular orbitals of <i>trans</i> -ZnA ₂ BC 1a using DFT calculation at the B3LYZ/LANL2DZ level.	19
Figure S29	Frontier molecular orbitals of <i>trans</i> -CuA ₂ BC 1b using DFT calculation at the B3LYZ/LANL2DZ level.	20
Figure S30	Frontier molecular orbitals of <i>trans</i> -NiA ₂ BC 1c using DFT calculation at the B3LYZ/LANL2DZ level.	20
Figure S31	Frontier molecular orbitals of <i>trans</i> -H ₂ A ₂ BC 2 using DFT calculation at the B3LYZ/LANL2DZ level.	21
Figure S32	Frontier molecular orbitals of <i>trans</i> -ZnA ₂ BC 2a using DFT calculation at the B3LYZ/LANL2DZ level.	21
Figure S33	Frontier molecular orbitals of <i>trans</i> -CuA ₂ BC 2b using DFT calculation at the B3LYZ/LANL2DZ level.	22
Figure S34	Frontier molecular orbitals of <i>trans</i> -NiA ₂ BC 2c using DFT calculation at the B3LYZ/LANL2DZ level.	22
Figure S35	Optimized geometry structure for <i>trans</i> -ZnA ₂ BC 1a and 2a .	23
Figure S36	Optimized geometry structure for <i>trans</i> -CuA ₂ BC 1b and 2b .	23
Figure S37	Optimized geometry structure for <i>trans</i> -NiA ₂ BC 1c and 2c.	24
Figure S38	The pictorial representations of the resultant dipole moments of <i>trans</i> -A ₂ BC type porphyrins 1 , 1a , 1b and 1c .	24

Figure S39	The pictorial representations of the resultant dipole moments of <i>trans</i> -A ₂ BC type porphyrins 2 , 2a , 2b and 2c .	25
Figure S40	Deviation of core atoms of porphyrin ring from the mean plane for <i>trans</i> -A ₂ BC type porphyrins 1 , 1a , 1b and 1c .	25
Figure S41	Deviation of core atoms of porphyrin ring from the mean plane for <i>trans</i> -A ₂ BC type porphyrins 2 , 2a , 2b and 2c .	26
Table S1	Crystallographic and structure refinement data for synthesized <i>trans</i> -H ₂ A ₂ BC porphyrin 2 .	17
Table S2	Selected average bond lengths and bond angles of synthesized <i>trans</i> -H ₂ A ₂ BC porphyrin 2 from single crystal XRD studies.	18
Table S3	Selected bond lengths and bond angles of <i>trans</i> -A ₂ BC type porphyrins 1 , 1a , 1b and 1c .	26
Table S4	Selected bond lengths and bond angles of <i>trans</i> -A ₂ BC type porphyrins 2 , 2a , 2b and 2c .	27

Figure S1¹H NMR of *trans*-H₂A₂BC (1) in CDCl₃ at 298 K.

Figure S2 ¹H NMR of *trans*-ZnA₂BC (1a) in CDCl₃ at 298 K.

Figure S3 ¹H NMR of *trans*-NiA₂BC (1c) in CDCl₃ at 298 K.

Figure S4 ¹H NMR of *trans*-H₂A₂BC (2) in CDCl₃ at 298 K.

Figure S5 ¹H NMR of *trans*-ZnA₂BC (2a) in CDCl₃ at 298 K.

Figure S6 ¹H NMR of *trans*-NiA₂BC (2c) in CDCl₃ at 298 K.

Figure S7 13 C NMR of *trans*-H₂A₂BC (1) in CDCl₃ at 298 K.

Figure S8 ¹³C NMR of *trans*-ZnA₂BC (1a) in CDCl₃ at 298 K.

Figure S9 ¹³C NMR of *trans*-NiA₂BC (1c) in CDCl₃ at 298 K.

Figure S10 13 C NMR of *trans*-H₂A₂BC (2) in CDCl₃ at 298 K.

Figure S11 ¹³C NMR of *trans*-ZnA₂BC (2a) in CDCl₃ at 298 K.

Figure S13 MALDI-TOF mass spectrum of *trans*-H₂A₂BC (1) in DCM in a positive ion mode.

Figure S14 MALDI-TOF mass spectrum of *trans*-ZnA₂BC (1a) in DCM in a positive ion mode.

Figure S15 MALDI-TOF mass spectrum of *trans*-CuA₂BC (1b) in DCM in a positive ion

mode.

Figure S16 MALDI-TOF mass spectrum of *trans*-NiA₂BC (1c) in DCM in a positive ion mode.

Figure S17 MALDI-TOF mass spectrum of *trans*-H₂A₂BC (2) in DCM in a positive ion

mode.

Figure S18 MALDI-TOF mass spectrum of *trans*-ZnA₂BC (2a) in DCM in a positive ion mode.

Figure S19 MALDI-TOF mass spectrum of *trans*-CuA₂BC (2b) in DCM in a positive ion

mode.

Figure S20 MALDI-TOF mass spectrum of *trans*-NiA₂BC (2c) in DCM in a positive ion mode.

Figure S21 (a) UV-visible Spectra of *trans*-H₂A₂BC (**2**) and *trans*-ZnA₂BC (**2a**) in DCM at 298 K. (b) Emission Spectra of *trans*-H₂A₂BC (**2**) and *trans*-ZnA₂BC (**2a**) in DCM at 298 K.

Figure S22 Comparative UV-visible spectra of *trans*-MA₂BC (M= Cu(II) (1b), Ni(II) (1c), Cu(II) (2b), and Ni(II) (2c))

Figure S23 (a) Comparative cyclic voltammograms of *trans*-H₂A₂BC porphyrins **1** and **2** with respect to H₂TPP in CH₂Cl₂ containing TBAPF₆ as a supporting electrode at 298 K. (b) Energy level diagram of *trans*-H₂A₂BC porphyrins **1** and **2** with respect to H₂TPP.

Figure S24 (a) Comparative cyclic voltammograms of *trans*-CuA₂BC porphyrins **1b** and **2b** with respect to CuTPP in CH₂Cl₂ containing TBAPF₆ as a supporting electrode at 298 K. (b) Energy level diagram of *trans*-CuA₂BC porphyrins **1b** and **2b** with respect to CuTPP.

Figure S25 (a) Comparative cyclic voltammograms of *trans*-NiA₂BC porphyrins **1b** and **2b** with respect to NiTPP in CH₂Cl₂ containing TBAPF₆ as a supporting electrode at 298 K. (b) Energy level diagram of *trans*-NiA₂BC porphyrins **1b** and **2b** with respect to NiTPP.

Table S1 Crystallographic and structure refinement data for synthesized *trans*-H₂A₂BC porphyrin (2).

Formula	$C_{58}H_{48}N_6O_2S$
Formula weight	893.08
Crystal system	Triclinic
Space group	P-1
a, Å	8.0272 (16)
b, Å	17.522 (4)
c, Å	22.872 (5)
α, degrees	69.48 (3)
β, degrees	83.85 (3)
γ, degrees	81.25 (3)
V, Å ³	2972.8 (12)
D _{calc} , mg/m ³	0.998
Ζ	2

Crystal size, mm	0.19, 0.14, 0.08
λ (Μο Κα) Å	0.71073 Å
temperature, K	298 (2)
Data collection range, θ , deg.	1.890 to 25.252
Total reflections collected	63723
Independent reflections	10408
Quality-of-fit indicator	1.533
Final R indices $[1 > 2\sigma (I)]$	R1 = 0.1395; wR2 = 0.3656
R indices (all data)	R1 = 0.1632; wR2 = 0.3857
CCDC No.	2050444

Figure S26 Deviation of core atoms of porphyrin ring from the mean plane for synthesized *trans*-H₂A₂BC porphyrin (**2**) from single crystal XRD structure.

Table S2 Selected average bond lengths and bond angles of synthesized *trans*-H₂A₂BCporphyrin (2) from single crystal XRD studies.

Bond Lengths (Å)		Bond An	Bond Angles (°)		
N - Ca	1.370(2)	Ν-Cα-Cβ	108.8(2)		
N' - Ca'	1.365(7)	Ν'- Cα'- Cβ'	108.6(4)		
C α - C β	1.428(5)	$C_{\beta} - C_{\alpha} - C_m$	124.1(9)		
C_{α}' - C_{β}'	1.445(7)	$C\beta'$ - $C\alpha'$ - C_m	125.2(2)		

C_{β} - C_{β}	1.362(5)	$C_{\alpha} - C_m - C_{\alpha}'$	124.7(7)
C_{β}' - C_{β}'	1.360	$C_{\alpha} - C_{\beta} - C_{\beta}$	107.1(7)
C_{α} - C_m	1.394	C_{α}' - C_{β}' - C_{β}'	107.3(1)
C_{α}' - C_m	1.408	C α'- N'- C α'	108.0(6)
ΔC_{β} (Å)	0.143	C_{α} - N- C_{α}	107.9(5)
ΔC24 (Å)	0.080		

Figure S27 Frontier molecular orbitals of *trans*-H₂A₂BC (1) using DFT calculation at the B3LYZ/LANL2DZ level.

Figure S28 Frontier molecular orbitals of *trans*-ZnA₂BC (1a) using DFT calculation at the B3LYZ/LANL2DZ level.

Figure S29 Frontier molecular orbitals of *trans*-CuA₂BC (**1b**) using DFT calculation at the B3LYZ/LANL2DZ level.

Figure S30 Frontier molecular orbitals of *trans*-NiA₂BC (1c) using DFT calculation at the B3LYZ/LANL2DZ level.

Figure S31 Frontier molecular orbitals of *trans*-H₂A₂BC (**2**) using DFT calculation at the B3LYZ/LANL2DZ level.

Figure S32 Frontier molecular orbitals of *trans*-ZnA₂BC (**2a**) using DFT calculation at the B3LYZ/LANL2DZ level.

Figure S33 Frontier molecular orbitals of *trans*-CuA₂BC (**2b**) using DFT calculation at the B3LYZ/LANL2DZ level.

Figure S34 Frontier molecular orbitals of *trans*-NiA₂BC (**2c**) using DFT calculation at the B3LYZ/LANL2DZ level.

Figure S35 Optimized geometry structure for *trans*-ZnA₂BC 1a and 2a.

Figure S36 Optimized geometry structure for *trans*-CuA₂BC 1b and 2b.

Figure S37 Optimized geometry structure for *trans*-NiA₂BC 1c and 2c.

Figure S38 The pictorial representations of the resultant dipole moments of *trans*-A₂BC type porphyrins **1**, **1a**, **1b** and **1c**.

Figure S39 The pictorial representations of the resultant dipole moments of *trans*-A₂BC type porphyrins **2**, **2a**, **2b** and **2c**.

Figure S40 Deviation of core atoms of porphyrin ring from the mean plane for *trans*-A₂BC type porphyrins **1**, **1a**, **1b** and **1c**.

Figure S41 Deviation of core atoms of porphyrin ring from the mean plane for *trans*-A₂BC type porphyrins **2**, **2a**, **2b** and **2c**

Table S3 Selected bond lengths and bond angles of *trans*-A2BC type porphyrins 1, 1a, 1band 1c.

	1	1a	1b	1c		
Bond Length (A°)						
M-N	-	2.068	2.029	1.967		
M-N'	-	2.068	2.029	1.967		
N-Ca	1.389	1.395	1.396	1.399		
N'-Ca'	1.391	1.395	1.397	1.399		
C α- C β	1.470	1.458	1.455	1.451		
C α' -C β'	1.446	1.458	1.455	1.451		
C β- C β	1.368	1.375	1.372	1.370		
C β' -C β'	1.382	1.375	1.372	1.370		
C_{α} - C_m	1.417	1.416	1.407	1.399		
$\mathbf{C}_{\alpha'}$ - \mathbf{C}_m	1.412	1.416	1.407	1.400		
$\Delta C \beta$ (Å)	0.029	0.052	0.021	0.148		
Δ24 (Å)	0.025	0.030	0.017	0.187		
ΔMetal	-	0.001	0.000	0.003		
(Å)						
		Bond Angles (°)			
M-N-Ca	-	126.4	126.9	127.4		
M-N'-Ca	-	126.4	126.9	127.4		
N-M-N	-	179.9	179.8	179.8		
N'-M-N'	-	179.9	179.8	179.8		
$N-C_{\alpha}-C_{m}$	126.4	126.1	126.4	126.2		
$N'-C\alpha'-Cm$	126.9	126.1	126.4	126.2		
Ν-Cα-Cβ	110.4	109.1	109.7	110.3		
N'-C α '-C β '	106.6	109.1	109.7	110.3		
C_{β} - C_{α} - C_m	123.2	124.7	123.9	123.3		
$C_{\beta'} - C_{\alpha'} - C_m$	126.6	124.7	123.9	123.4		
C_{α} - C_m - $C_{\alpha'}$	124.9	124.8	123.3	121.4		
C_{α} - C_{β} - C_{β}	106.7	107.3	107.2	107.1		
$C_{\alpha'}-C_{\beta'}-C_{\beta'}$	108.2	107.3	107.2	107.1		
C α' -N'-C α'	110.4	107.1	106.2	105.2		
Ca-N-Ca	105.7	107.1	106.2	105.2		

Table S4 Selected bond lengths and bond angles of *trans*-A₂BC type porphyrins 2, 2a, 2b and 2c.

	2	2a	2b	2c		
Bond Length (A°)						
M-N	-	2.067	2.028	1.982		
M-N'	-	2.067	2.028	1.982		
N-Ca	1.390	1.394	1.396	1.399		

N'-Ca'	1.389	1.394	1.396	1.400
Cα-Cβ	1.446	1.458	1.455	1.451
C α' -C β'	1.470	1.458	1.455	1.450
$C_{\beta}-C_{\beta}$	1.382	1.375	1.372	1.369
$C_{\beta'}-C_{\beta'}$	1.368	1.375	1.372	1.369
C_{α} - C_m	1.410	1.414	1.405	1.397
$C_{\alpha'}-C_m$	1.415	1.414	1.406	1.397
$\Delta C \beta$ (Å)	0.023	0.018	0.016	0.016
Δ24 (Å)	0.019	0.016	0.013	0.019
ΔMetal	-	0.003	0.003	0.003
(Å)				
		Bond Angles (°)	
M-N-Ca	-	126.5	126.9	127.6
M-N'-Ca	-	126.4	126.9	127.6
N-M-N	-	179.3	179.8	179.9
N'-M-N'	-	178.8	179.5	180.0
N-Ca-Cm	126.8	126.1	126.4	126.5
N'-Ca'-Cm	126.3	126.0	126.4	126.5
Ν-Cα-Cβ	106.6	109.1	109.7	110.6
N'- $C_{\alpha'}$ - $C_{\beta'}$	110.5	109.1	109.7	110.6
Cβ- Cα-Cm	123.2	124.8	123.9	122.9
$C_{\beta'} - C_{\alpha'} - C_m$	126.6	124.8	123.9	121.9
Ca-Cm-Ca'	124.97	124.9	123.5	121.9
C α- C β- C β	108.2	107.3	107.2	107.0
$C_{\alpha'}-C_{\beta'}-C_{\beta'}$	106.7	107.3	107.2	107.0
C α'- N'-C α'	110.4	107.1	106.2	104.8
Ca-N-Ca	105.6	126.5	106.2	104.8