Supporting information

for

Solid-phase synthesis of peptide Mn(I)–carbonyl bioconjugates and their CO release upon visible light activation

Yi Zhou, Yonglu Chen and Chunmao He*

School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.

E-mail: hecm@scut.edu.cn

Figure S1¹H NMR spectrum of SAAC: Fmoc-Lys(dpa)-OH.

2. Side reaction of the SAAC approach

Model dipeptide **1**: Fmoc-Lys(dpa)-Ala-NH₂ compound **2**: Lys(dpa)-Ala-NH₂ compound **3**: Ac-Lys(dpa)-Ala-NH₂

compound 3': Ac-Lys(Ac-dpa)-Ala-NH₂

Figure S2. HPLC and ESI-MS trace of the purified **1**; (A) HPLC: $t_R = 17.7 \text{ min} (15-65 \% \text{ solvent B} \text{ in solvent A over 15 min, } \lambda = 214 \text{ nm, C18 column}$; (B) ESI-MS calculated for **1**: [M + H]⁺ m/z = 621.32, [M + Na]⁺ m/z = 643.30, found: 621.25, 643.25.

Figure S3. HPLC and ESI-MS trace of **2**; (A) HPLC: $t_R = 12.35 \text{ min}$ (0-45 % solvent B in solvent A over 15 min, $\lambda = 214 \text{ nm}$, C18 column); (B) ESI-MS calculated for **2**: $[M + H]^+ \text{ m/z} = 399.24$, $[M + Na]^+ \text{ m/z} = 421.23$, found: 399.20, 421.15.

Figure S4. HPLC and ESI-MS trace of **3** and **3'**; (A) HPLC: $t_{R1} = 12.07 \text{ min}$, $t_{R2} = 13.06 \text{ min}$ (0-45 % solvent B in solvent A over 15 min, $\lambda = 214 \text{ nm}$, C18 column); (B) ESI-MS calculated for **3'**: [M + H]⁺ m/z = 392.51, [M + Na]⁺ m/z = 414.21, found: 392.20, 414.20. (C) ESI-MS calculated for **3**: [M + H]⁺ m/z = 441.55, [M + Na]⁺ m/z = 463.24, found: 441.25, 463.25.

Scheme S1. Proposed mechanism of the Ac₂O caused side-reaction in the SAAC strategy.

3. Synthesis of TAT-MnCO bioconjugates

Figure S5. Analytical HPLC trace and MALDI-TOF-MS of the cleaved peptide from resin **4**. (A) Analytical HPLC of **4**: t_R =10.43 min (15-65 % solvent B in solvent A over 15 min); (B) MALDI-TOF-MS found 1681.79 Da of **4**, calculated: 1684.99 Da.

Figure S6. Analytical HPLC trace and MALDI-TOF-MS of the cleaved peptide from resin **4'**. (A) Analytical HPLC of **4'**: t_R =4.47 min (15-65 % solvent B in solvent A over 15min); (B) MALDI-TOF-MS found 1599.65 Da of **4'**, calculated: 1600.91 Da.

Figure S7. Analytical HPLC trace and LCMS of the cleaved peptide from resin **5a** and **5b**. (A) Analytical HPLC of **5a**: t_R =8.70 min (15-65 % solvent B in solvent A over 15min); (B) ESI-MS found of **5a**, calculated: 1783.14 Da; (C) Analytical HPLC of **5b**: t_R =14.23 min (15-65 % solvent B in solvent A over 15 min); (D) ESI-MS found 1883.00 Da of **5b**, calculated: 1883.14 Da.

Figure S8. Analytical HPLC trace and LCMS of **7a** and **7b**. (A) Analytical HPLC of **7a**: t_R =13.37 min (15-65 % solvent B in solvent A over 15min); (B) ESI-MS found 1921.00 Da of **7a**, calculated: 1922.10 Da; (C) Analytical HPLC of **7b**: t_R = 15.39 min (15-65 % solvent B in solvent A over 15min); (D) ESI-MS found 2021.00 Da of **7b**, calculated:2022.23 Da.

Figure S9. Analytical HPLC trace and LCMS of **5c** and **5d**. (A) Analytical HPLC of **5c**: t_R =11.37 min (15-65 % solvent B in solvent A over 15min); (B) ESI-MS found 1794.68 Da of **5c**, calculated: 1795.18 Da; (C) Analytical HPLC of **5d**: t_R = 15.33 min (15-65 % solvent B in solvent A over 15min); (D) ESI-MS found 1895.00 Da of **5d**, calculated:1895.30 Da.

Figure S10. Analytical HPLC trace and LCMS of **7c** and **7d**. (A) Analytical HPLC of **7c**: t_R =11.72 min (15-65 % solvent B in solvent A over 15min); (B) ESI-MS found 1933.00 Da of **7c**, calculated: 1932.90 Da; (C) Analytical HPLC of **7d**: t_R = 14.29 min (15-65 % solvent B in solvent A over 15min); (D) ESI-MS found 2033.00 Da of **7d**, calculated:2032.23 Da.

Figure S11. Analytical HPLC trace and LCMS of **5e** and **5f**. (A) Analytical HPLC of **5e**: t_R =5.53 min (15-65 % solvent B in solvent A over 15min); (B) ESI-MS found 1789.07 Da of **5e**, calculated: 1789.07 Da; (C) Analytical HPLC of **5f**: t_R = 15.81 min (15-65 % solvent B in solvent A over 15min); (D) ESI-MS found 1889.00 Da of **5f**, calculated:1889.10 Da.

Figure S12. Analytical HPLC trace and LCMS of **7e** and **7f**. (A) Analytical HPLC of **7e**: t_R =12.8 min (15-65 % solvent B in solvent A over 15min); (B) ESI-MS found 1926.67 Da of **7e**, calculated: 1927.00 Da; (C) Analytical HPLC of **7f**: t_R = 15.34min (15-65 % solvent B in solvent A over 15min); (D) ESI-MS found 2027.17 Da of **7f**, calculated:2027.00 Da.

6.FT-IR spectra characterization (with Gaussian fittings)

Figure S13. (A)-(F): FT-IR spectra of **7a-7f** in KBr pellets. The Gaussian fittings allowed for the assignment of the two un-resolved v_{CO} bands are shown as dashed lines.

7. Stability test

Figure S14. (A)-(F) HPLC traces of **7a-7f** incubation in 10mM PBS (pH 7.4) in the dark.

8.Myoglobin assay

Figure S15. Time course of absorption spectral change of deoxy-Mb at RT (final concentration: 40 μ M, in 10 mM PBS buffer (pH 7.4)) in a solution containing **7a** (final concentration 10 μ M, in 10 mM PBS buffer (pH 7.4)) after Violet light (A) and Blue light (B) irradiation.

Figure S16. Time course of absorption spectral change of deoxy-Mb at r.t. (final concentration: 40 μ M, in 10 mM PBS buffer (pH 7.4)) in a solution containing **7b** (final concentration 10 μ M, in 10 mM PBS buffer (pH 7.4)) after violet light (A), blue light (B) and green light (C) irradiation.

Figure S17. Time course of absorption spectral change of deoxy-Mb at RT (final concentration: 40 μ M, in 10 mM PBS buffer (pH 7.4)) in a solution containing **7c** (final concentration 10 μ M, in 10 mM PBS buffer (pH 7.4)) after Violet light (A) and Blue light (B) irradiation.

Figure S18. Time course of absorption spectral change of deoxy-Mb at r.t. (final concentration: 40 μ M, in 10 mM PBS buffer (pH 7.4)) in a solution containing **7d** (final concentration 10 μ M, in 10 mM PBS buffer (pH 7.4)) after violet light (A), blue light (B) and green light (C) irradiation.

Figure S19. Time course of absorption spectral change of deoxy-Mb at RT (final concentration: 40 μ M, in 10 mM PBS buffer (pH 7.4)) in a solution containing **7e** (final concentration 10 μ M, in 10 mM PBS buffer (pH 7.4)) after Violet light (A) and Blue light (B) irradiation.

Figure S20. Time course of absorption spectral change of deoxy-Mb at r.t. (final concentration: 40 μ M, in 10 mM PBS buffer (pH 7.4)) in a solution containing **7f** (final concentration 10 μ M, in 10 mM PBS buffer (pH 7.4)) after violet light (A), blue light (B) and green light (C) irradiation.

9. EPR spectrum of TAT-CORM before and after irradiation

TAT-MnCO conjugates were prepared in dd- H_2O (final concentration: 5 mM). The samples were added to the capillary EPR tubes and measured. Violet light (~ 415 nm, LED, 5 W) was then irradiated to the capillary EPR tubes for 5 min, the resulting spectrum was recorded. All EPR spectra were recorded at 293 K.

Figure S21. X-band EPR spectra (at 295 K) of **7a** (A) and **7b** (B) before (black trace) and after irradiated by violet light (5 min) in H_2O . Microwave frequency, 9.87 GHz; Modulation amplitude, 1.0 G; Modulation frequency, 100 kHz and power of the microwave source, 1.262 mW. Note that the background Mn^{II} signals in both cases (black traces) was probably caused by partial CO release during sample preparation, due to light exposure and further oxidation.